Angelika Wiegele

Nonlinear Optimization
Techniques Applied to
Combinatorial Optimization
Problems

DISSERTATION

zur Erlangung des akademischen Grades
Doktorin der Technischen Wissenschaften

Alpen-Adria-Universitat Klagenfurt

Fakultat fiir Wirtschaftswissenschaften und Informatik

1. Begutachter: Univ.-Prof. Dipl.-Ing. Dr. Franz Rendl
Institut fiir Mathematik

2. Begutachterin: Ao. Univ.-Prof. Dipl.-Ing. Dr. Christine Nowak
Institut fiir Mathematik

Oktober 2006

Ehrenwortliche Erklarung

Ich erklare ehrenwortlich, dass ich die vorliegende Schrift verfasst und die mit ihr
unmittelbar verbundenen Arbeiten selbst durchgefiihrt habe. Die in der Schrift
verwendete Literatur sowie das Ausmaf} der mir im gesamten Arbeitsvorgang ge-
wahrten Unterstiitzung sind ausnahmslos angegeben. Die Schrift ist noch keiner
anderen Priifungsbehorde vorgelegt worden.

M?féwaw%

Klagenfurt, Oktober 2006

Abstract

Combinatorial Optimization and Semidefinite Programming are two research top-
ics that have attracted the attention of many mathematicians and computer sci-
entists during the past two decades. Remarkable results have been achieved in
both fields. This thesis is a further component in exploring the field of Semidefi-
nite Programming and investigating Combinatorial Optimization problems.

Due to the various areas of application, one research topic of high interest
is the development of algorithms for solving Semidefinite Programs. Although
reliable methods are already available and widely used these algorithms are often
inapplicable for large-scale programs, due to the huge memory requirements or
the vast computational effort. The present work proposes methods (and imple-
mentations) that are capable of solving Semidefinite Programs of high dimensions
and/or a large number of constraints. These methods are: the Bundle Method
applied to solve Semidefinite Programs, the Spectral Bundle Method with second
order information, and the Boundary Point Method.

Exploiting the concept of Bundle Methods allows solving problems, even if
the number of constraints is rather large. By the use of Lagrange multipliers, the
constraints (or some of them) are lifted into the objective function and the dual
problem is then solved following the concept of Bundle Methods.

In the Spectral Bundle Method the largest Eigenvalue M., of a matrix is
minimized. Since the second-order behavior of the A\p.x function is well studied,
it can be incorporated in this method. Making partial use of this second-order
information improves the efficiency of the Spectral Bundle Method while keeping
it computationally practical.

Another new algorithm for solving Semidefinite Programs is the Boundary
Point Method. This is an augmented Lagrangian algorithm applied to solve
Semidefinite Programs. For various problem classes this method is by far superior
to other available algorithms.

Regarding applications, the main focus of this study is on the Max-Cut prob-
lem, one of the most challenging Combinatorial Optimization problems. The
applicability of this problem is even broader than obvious at first sight, since any
unconstrained quadratic (0-1) problem can be transformed to a Max-Cut prob-
lem. Apart from recalling the properties of the problem and giving a survey of
relaxations and known solution methods, new relaxations based on Semidefinite

11

Programming are introduced. Finally, “Biq Mac” was developed, a solver for
binary quadratic and Max-Cut problems. Biq Mac is an implementation of an
exact solution method using a Branch & Bound algorithm with a bounding rou-
tine based on Semidefinite Programming. Detailed information on this algorithm,
as well as a collection of test problems together with numerical results, can be
found in the present thesis. Various test problems that have been considered in
the literature for years, were solved by Biq Mac for the first time. This affirms
the success of using Semidefinite Programming for Combinatorial Optimization
problems.

Acknowledgements

I am grateful to a number of people who have supported me in the development
of this work and it is my pleasure now to highlight them here.

I want to thank my supervisor Franz Rendl for introducing me into the field
of Semidefinite Programming, for his enthusiasm about discussing mathematical
issues and for the large amount of time he devoted to my concerns. His ideas and
advice led me into active research and substantiated my thesis.

The Mathematics Department at the Alpen-Adria-Universitdt Klagenfurt pro-
vided excellent working conditions. I would like to thank my colleagues at the
department and especially Christine Nowak. She served as a member of my Ph.D.
committee and she was willing to encourage me at any time.

I also want to thank Giovanni Rinaldi for inviting me to IASI-CNR in Rome.
Due to him and the people in his group my research stays in Rome were very
fruitful and enjoyable. Furthermore, I gratefully acknowledge financial support
from the EU project Algorithmic Discrete Optimization (ADONET), MRTN-
CT-2003-504438. Participation at various conferences and workshops, as well as
the research stay at IASI-CNR in Rome were financed by this research training
network.

Having people around to have fun with, to discuss whatever has to be dis-
cussed, to fill my spare time with joyful events, but also to understand that
sometimes ‘spare time’ is negligibly small, is very important for me. I am grate-
ful for being surrounded by such friends and for the many occasions that proved
how precious they are to me.

Above all, my thanks go to my family. Although I was away quite often, I
always had a hearty welcome when returning home. I want to dedicate this work
to them.

iii

Contents

Abstract

Acknowledgements

Notation

Introduction

1

Semidefinite Programming

1.1
1.2
1.3
14

The Semidefinite Programming Problem
Duality Theory
Eigenvalue Optimization
On Solving Semidefinite Programming Problems
1.4.1 Interior-Point Methods
1.4.2 Spectral Bundle Method
1.4.3 Software for Solving Semidefinite Programs

Combinatorial Optimization

21
2.2
2.3
24

The
3.1
3.2

3.3

The Max-Cut Problem
The Stable Set Problem
The Graph Partitioning Problem
The Max-Sat Problem

Maximum Cut Problem

Properties of the Max-Cut Problem
Quadratic (0-1) Programming and Relation to MC
321 (QP)—» (MC) e
322 (MC)— (QP)
323 MC)vs. (QP)
Relaxations of the Max-Cut Problem
3.3.1 Relaxations Based on Linear Programming
3.3.2 A Basic SDP Relaxation
3.3.3 Convex Quadratic Relaxations
3.3.4 Second-Order Cone Programming Relaxations

iii

ix

vi

CONTENTS

3.3.5 Branch & Bound with Preprocessing
3.4 A Rounding Heuristic Based on SDP

SDP Relaxations of the Max-Cut Problem

4.1 The Basic Relaxation

4.2 Strengthening the Basic Relaxation

4.3 Lift-and-Project Methods
4.3.1 The Lifting of Anjos and Wolkowicz
4.3.2 The Lifting of Lasserre

4.4 Between the Basic Relaxation and a First Lifting
44.1 Exploiting Sparsity
4.4.2 Systematically Chosen Submatrices
4.4.3 Numerical Results of MCSPARSE)

Algorithms for solving large-scale SDPs

5.1 The Bundle Method in Combinatorial Optimization
5.1.1 Solving (MCSPARSE) Using the Bundle Method . .
5.1.2 Solving (SDPMET) Using the Bundle Method

5.2 Spectral Bundle with 2nd Order Information

5.3 A Boundary Point Method

5.4 A Recipe for Choosing the Proper Solution Method

Biq Mac
6.1 A Branch & Bound Framework for (MC).
6.2 BranchingRules.
6.21 EasyFirst
6.2.2 Difficult First oo oL
6.23 AVariantof R3.
6.2.4 Strong Branching oL
6.3 Implementation of the Biq Mac Solver
6.4 The Biq Mac Library
641 Max-Cut
6.4.2 Instancesof (QP).,
6.5 Numerical Results
6.5.1 Numerical Results of (MC) Instances
6.5.2 Numerical Results of (QP) Instances
6.6 Extensions e
6.6.1 The Bisection Problem
6.6.2 Max-2Sat
6.6.3 The Stable Set Problem
6.6.4 The Quadratic Knapsack Problem
6.7 Concluding Remarks on BigMac

CONTENTS

Summary and Outlook

A Background Material
A.1 Positive Semidefinite Matrices
A2 Convexity, Minimax Inequality

B Problem Generation
Bl rudyQalls
B.2 Pardalos-Rodgers Generator Parameters
B.2.1 Parameters for the bqpgka Instances
B.2.2 Parameters for the bgpbe Instances

C Tables with Detailed Numerical Results
Bibliography

Index of Keywords

Vil

Notation

This is a short description of the symbols used throughout this thesis. Also the
names of the various (semidefinite) programs are given, including the numbers of
the sections where they appear for the first time.

R™ space of real n-dimensional vectors

S, space of n X n symmetric matrices

St space of n X n positive semidefinite matrices
St space of n x n positive definite matrices

S, space of n x n negative semidefinite matrices
S~ space of n X n negative definite matrices

b Lowner partial order

min minimum, minimize

max maximum, maximize

inf infimum

sup supremum

v nabla operator

(—9—% f(zq,...,z,) partial derivative

A(+) linear operator

AT() adjoint of the linear operator A(-)

trA trace of matrix A

(A, B) (A, B) := tr(ATB)

I identity matrix of appropriate dimension

I, identity matrix of dimension n

J matrix of all ones

e vector of all ones of appropriate dimension

€n vector of all ones of dimension n

Amin(A) minimum eigenvalue of the symmetric matrix A
Amax(A) maximum eigenvalue of the symmetric matrix A
diag(A) vector formed by the main diagonal of matrix A

ix

Diag(v)

CONTENTS

diagonal matrix with main diagonal v

G = (V(G),E(G)) graph G with vertex set V(G) and edge set E(G)

i~
]
o(G)
w(G)
x(G)
I(G)
(PSDP)
(DSDP)
(EVP)
(MC)
(QP)
(THETA)
(DTHETA)
(GP)
(MCSDP)
(MCDSDP)
(MCEIG)

(SDPMET)

(SDP3)
(SDP3p)

vertices 1 and j are in the same partition block
vertices 1 and j are in opposite partition blocks
stability number of graph G

clique number of graph G

chromatic number of graph G

¥-number of graph G

primal Semidefinite Program in standard form, 1.1
dual Semidefinite Program in standard form, 1.1
Eigenvalue Optimization Problem, 1.1

Max-Cut problem, 2.1

unconstrained quadratic (0-1) problem, 3.2
SDP for computing the ¥-number, 2.2

and its dual, 2.2

graph partitioning problem, 2.3

basic SDP relaxation of (MC), 3.3.2

and its dual, 3.3.2

basic SDP relaxation of (MC) as eigenvalue optimization prob-
lem, 3.3.2

SDP relaxation of (MC) strengthened by the triangle inequlities,
4.2

lifting of Anjos and Wolkowicz, 4.3.1
projected lifting of Anjos and Wolkowicz, 4.3.1

(MCSPARSE) SDP relaxation of (MC) designed for sparse graphs, 4.4

Introduction

This thesis is basically concerned with two topics:

e The Max-Cut problem: introducing new relaxations based on Semidefinite
Programming to obtain tight upper bounds and developing an exact solu-
tion method.

e Methods for solving large-scale Semidefinite Programs.

In order to make this thesis self-contained, we explain in Chapter 1 the basics
about Semidefinite Programming and sketch the two most popular methods for
solving Semidefinite Programs, namely Interior-Point methods and the Spectral
Bundle Method. In Chapter 2 an introduction to Combinatorial Optimization
and some of the problems arising in this field are given.

One of these problems arising from Combinatorial Optimization is the Max-
Cut problem. We concentrate in this thesis on this NP-complete problem and
therefore, Chapter 3 gives a more detailed description and explains methods for
finding upper bounds or solving it. Furthermore it is shown in this chapter that
solving Max-Cut problems and solving unconstrained quadratic (0-1) problems
is essentially the same. Therefore and since many real-world problems can be
formulated as unconstrained quadratic (0-1) problems, it is even more striking
to have an algorithm that solves Max-Cut problems efficiently.

Chapter 4 is concerned with the Max-Cut problem as well. Within this chap-
ter we take a closer look on relaxations based on Semidefinite Programming.
Apart from those relaxations that work with matrix variables indexed by the
vertex-set of the underlying graph, we also consider methods that apply a lift-
and-project strategy. The latter relaxations, although being of highly theoret-
ical interest, are practically not computable, already for medium-sized graphs.
We introduce a new relaxation, that can be viewed as ‘lying between’ the basic
semidefinite-programming relaxation and a first lifting, and that is solvable also
for graphs on a few hundred nodes.

Having various Semidefinite Programming formulations that can provide bounds
for NP-hard problems leads naturally to the demand of algorithms for solving
these Semidefinite Programs. This issue is addressed in Chapter 5. We sketch
there the concept of Bundle Methods and apply this concept to solving Semidef-
inite Programs, in particular we design the algorithm for solving two of the re-

1

2 CONTENTS

laxations introduced in Chapter 4. Furthermore, we come back to the Spectral
Bundle Method, which we equip with a second order model. And as a further
algorithm, the Boundary Point Method is introduced within this chapter. This
new method elaborates the idea of using the augmented Lagrangian algorithm
for solving Semidefinite Programs.

The final chapter of this thesis, Chapter 6, provides an exact solution method
for Max-Cut problems. The Big Mac solver for solving Binary Quadratic and
Max-Cut problems is explained. Apart from the ingredients of this solver, i.e.
a Branch & Bound framework, branching rules, implementation issues, etc., also
a wide variety of test problems are collected and detailed numerical results are
given.

Summarizing, this thesis provides the following new studies:

e A relaxation for sparse Max-Cut problems based on Semidefinite Program-
ming (Section 4.4) and implementation of the Bundle Method to solve this
relaxation (Section 5.1.1). This ongoing research can partly be found in
[113].

e Exploiting second order information in the spectral bundle method (Sec-
tion 5.2). See also the working paper [4].

¢ A boundary point method for solving Semidefinite Programs (Section 5.3).
This work has been published in [110].

e Developing and implementing Big Mac, an exact solution algorithm for
solving Max-Cut and unconstrained (0-1) problems. Furthermore, a collec-
tion of test problems has been built up and numerical results are presented
(Chapter 6). A technical report [115] is available.

Chapter 1

Semidefinite Programming

Many real-world applications, although being non-linear, can be well described by
* linearized models. Therefore, Linear Programming (LP) became a widely studied
and applied technique in many areas of science, industry and economy.

Semidefinite Programming (SDP) is an extension of LP. A matrix-variable
is optimized over the intersection of the cone of positive-semidefinite matrices
with an affine space. It turned out, that SDP can provide significantly stronger
practical results than LP. The study of SDP goes back to the sixties, when Bell-
man and Fan [19] derived theoretical properties of Semidefinite Programs. A first
application appeared in the work of Lovész [88]. Since then SDP turned out to
be practical in a lot of different areas, like combinatorial optimization, control
theory, and more recently in polynomial optimization.

Due to the numerous areas of applications, also solving SDPs became a widely
studied subject. Interior-Point Methods are the most popular algorithms nowa-
days. Recently the concept of Bundle Methods also has been applied for solving
Semidefinite Programs.

In this chapter we formulate the Semidefinite Programming problem including
duality theory. A subsection is dedicated to a related problem, namely Eigen-
value Optimization. Finally, Interior-Point Algorithms and the Spectral Bundle
Method, two algorithms for solving Semidefinite Programs are explained.

Most of the proofs of Theorems and Lemmas in this section are omitted,
because they appear in a wide variety of text-books or survey papers. For surveys
on SDP the reader is referred to e.g. Helmberg [52], Vandenberghe and Boyd [126],
Laurent and Rend! {80]. More references are given in the subsequent sections.

3

4 CHAPTER 1. SEMIDEFINITE PROGRAMMING

1.1 The Semidefinite Programming Problem

A Semidefinite Program in its standard notation is given as follows. Let C and
Aj, ..., A, be matrices in S, and b € R™, we obtain

(PSDP) max (C,X)
st. AX)=b
Xes, X0

where A: S, — R™ denotes a linear operator defined as

(A1, X)
A(X) = :
(Am, X)

The adjoint operator AT: R™ — &,,, is defined through the equation
(A(X),y) = (X, AT(y)), forall X € S,, y € R™. (1.1)

Therefore,

m

A(X),y) = ZyxAz,X ZyzAZ,X ZylAl,X> (AT (), X)

and hence,
=D _uA
i=1

In order to derive the dual to (PSDP), we introduce y € R™ to be the Lagrangian
multiplier for the equations in (PSDP). Then the following always hold:
max{(C, X): A(X)=b,X € §}} = max min (C,X) — (A(X) - b,y)

XeSt yer™

< min max (b,y) — (AT(y) — C, X)
YeR™ xest

= min{(b,y): AT(y) - C e S}, yeR™}.

The first equation is true, because if A(X) = b is not fulfilled, the minimization
yields —oco and conversely, if the equation is satisfied, (C, X) is the result, i.e.

(C,X) for A(X)=1b

—00 otherwise. (1.2)

min (C, X) — (A(X) - b,y) = {
yeER™

The inequality arises because of Lemma A.11 and for the last equation similar
ideas as for the first hold, namely

(b,y) for AT(y) - C € &F

00 otherwise.

max (b,y) — (AT(y) - C, X) = { (1.3)

Xest

1.2. DUALITY THEORY 5

Therefore, the dual to (PSDP) can be stated as

(DSDP) min (b,y)
st. AT(y)-C=2
yeR™, Z€S,, Z*0.

For referring to points satisfying the constraints in (PSDP) or (DSDP),
respectively, the following definitions will be useful:

Definition 1.1 (feasibility)
Matriz X € S} is feasible for (PSDP) if A(X) = b holds.
The pair (y, Z) € R™ x S} is feasible for (DSDP) if AT(y) —C = Z.

Definition 1.2 (strict feasibility)
Matriz X € S} is strictly feasible for (PSDP) if A(X) = b holds.
The pair (y,Z) € R™ x S+ is strictly feasible for (DSDP) if AT(y) - C = Z.

1.2 Duality Theory

In Section 1.1 we introduced the primal and dual formulation of an SDP in stan-
dard form by using Lagrangian multipliers. Let X be a primal feasible solution
and (y,Z) a dual feasible solution, then the difference between the objective
values of the primal and dual feasible solution is defined as duality gap.

Definition 1.3 (duality gap) Let X € S} and (y,2) € (R™ x §F), X being
feasible for (PSDP) and (y, Z) being feasible for (DSDP). The duality gap at
(X,y,Z) is given by

(b’ y) - (CaX>

Due to Lemma A .4, the duality gap is always non-negative:
(b,y) = (C, X) = (A(X),y) —(AT(y) - Z,X) =(2,X) 20. (14)
This fact is called weak duality and we formulate it as the following

Lemma 1.4 (weak duality) Let X € S;7, y € R™ with A(X) = b and AT(y)—
C e SF. Then
(C,X) < (by)

If X,y are feasible and the duality gap is zero, then strong duality holds and we
have a proof, that these are the optimal solutions for (PSDP) and (DSDP),
respectively. On the other hand, strong duality does not necessarily hold for
SDPs, as Vandenberghe and Boyd [126] exemplify:

6 CHAPTER 1. SEMIDEFINITE PROGRAMMING

Example 1.5 Consider the following SDP

max T2
0 12 0
s.t. Ty oo 0 t 0.
0 0 1+ T2

For deriving the dual to this SDP, let us rewrite it so that the matrices defining
the operator A become more evident:

max T2
0 -1 0
st. ([-1 0 o], x)=1
0 0 1
100
(o 0o0],x)=0
0 00O
0 01
(looo],x)=0
100
000
(oo 1],x)=0
010

The dual to this problem reads

miny; + 0yp + Oys + Oy s.t. y1 A1 + y2As + y3As + Y444 — C = 0,

i.€.
min 1y
Y2 1:2}11 Ys
s.t. l—%u 0 w)]=0.
Y3 Ya U

Because of Observation A.5, x15 has to be equal to zero and therefore, the optimal
objective value of (PSDP) is zero. In the dual, 1—_2y—1 has to be equal to zero, thus
the optimal value is 1 and we have a duality gap of 1 for any primal and dual
feasible solution.

Hence, contrary to linear programming, it is no longer true that the duality
gap has to be zero at the optimum.

One certificate that identifies problems with zero duality gap at the optimal
solution is the Slater constraint qualification, defined as follows.

1.2. DUALITY THEORY 7

Definition 1.6 (Slater constraint qualification)

(PSDP) satisfies the Slater condition if there exists X € S}+ with A(X) =b.
(DSDP) satisfies the Slater condition if there ezists a pair (y, Z) with Z € S}
and AT(y)—Z =C.

We can provide the following
Theorem 1.7 Denote

p* =sup{{C,X): A(X)=b,X € S}}

and
d* = inf{(b,y): AT(y) - C € S}}.

e If (PSDP) satisfies the Slater condition with p* finite, then p* = d* and
this value is attained for (DSDP).

e If (DSDP) satisfies the Slater condition with d* finite, then p* = d* is
attained for (PSDP).

o If (PSDP) and (DSDP) both satisfy the Slater condition, then p* = d* is
attained for both problems.

A proof can be found for instance in Duffin [34], Nesterov and Nemirovskii [98]
or Rockafellar {117]. Obviously, these conditions do not hold for Example 1.5.

As an example for an SDP where the primal optimal solution is not attained,
we cite Helmberg [52]:

Example 1.8 Consider the following Semidefinite Program and its dual:

max —T11
s.t. (xu 1) > 0.
1 T2
min 2y

1 y
s.t. <y1 O) > 0.

Due to Observation A.5, y; has to be equal to zero to guarantee dual feasibility
and thus, the optimal dual solution value is zero.

The primal problem has a strictly feasible solution (z1; = T2 = 2, for instance).
The fact, that X has to be positive semidefinite constrains the variables to 17 >
0, 292 > 0 and 1199 — 1 > 0. Thus, we have 11 > ;; with x99 non-negative.
With £s9 — 0o we get 11 = 0 and thus, the optimum is not attained for the
primal problem.

8 CHAPTER 1. SEMIDEFINITE PROGRAMMING

We have seen in (1.4) that a zero duality gap implies (Z, X) = 0 and hence,
ZX =0 (due to Lemma A.4). This motivates the following

Definition 1.9 (Complementary slackness) Matrices X € S} and Z € S}
are complementary if ZX = 0.

For problems where strong duality holds, we therefore obtain the following nec-
essary and sufficient optimality conditions:

(OPT) A(X)=b, XS} (primal feasibility)
AT(Y)—-C =2, Ze€ S}, ye R™ (dual feasibility)
ZX =0 (complementary slackness)

These optimality conditions play an important role for the development of
interior-point algorithms for solving Semidefinite Programs and will appear again
in Section 1.4.1.

1.3 Eigenvalue Optimization

Many practical applications lead to problems of Eigenvalue Optimization, for a
survey the reader is referred to Lewis and Overton [85]. The simple observation

X € S;r*.’ =)‘min(X) 2 0

(where Apmin(X) denotes the smallest eigenvalue of matrix X) indicates, that
Eigenvalue Optimization and Semidefinite Programming are tightly related.

Denote by Apax(X) the maximum eigenvalue of matrix X. We consider the
following Eigenvalue Optimization problem

(EVP) minalga,(C — AT(y)) + b7y (1.5)
or equivalently
(EVP) minaX+bTys.t. M > C — AT(y), (1.6)

with a € R and, as in the previous section, C € S,,, A: S, — R™ and b € R™.
To show the relation between (EVP) and Semidefinite Programming, consider
(PSDP) and (DSDP) defined in Section 1.1. We make the following assumption:

AX)=b=trX =a>0, (1.7)

called the constant trace property. Adding this redundant constraint (I, X) = a
to (PSDP), results in the following dual (X is the Lagrangian multiplier to the
newly added constraint)

(DSDP’) min (b, y) + (a, \)
st. AT(W)+ A\ -C=2Z
Ze St

1.3. EIGENVALUE OPTIMIZATION ’ 9

Assuming that strong duality holds for the underlying problem, we have
(Z,X)=0,Z€SH XeS
at the optimum and due to Lemma A.4 follows
ZX =0.

Therefore the optimal Z is singular (if Z would be non-singular, we obtain X = 0
which contradicts trX > 0) and all eigenvalues of —Z must be non-positive with
at least one eigenvalue equal to zero. Hence,

Amae(~ Z)—O s)\max(C’ AT(y) = M) =0
Amax(C' = AT(y)) = A =0
S A=)‘max(AT(y))

Substituting for A in the objective function of (DSDP’), we obtain
min aAmax(C — AT (y)) + 7y,

which is (EVP).
For easier notation, define

F(¥) == Amax(C — AT(y)) + by (1.8)

to be the function to be minimized. (To simplify matters, we assume multiplier
a to be equal to one.) Due to the well-known fact

Amax(X) = max{(W, X): ttW =1, W € S}} (1.9)
we can rewrite (1.8) as

fly) = max{(C—-AT(y),W)+bTy: tsW =1, W € S} =
= max{(C,W)+ (b— AW))Ty: ttW = 1,W € S}}.

Recall that function Apa(.) is differentiable if and only if the maximal eigenvalue
has multiplicity one. Typically, the largest eigenvalue has multiplicity larger than
one for eigenvalue optimization problems and therefore one has to deal with the
sub-differential of A\, at X,

Nmax(X) = {W € ST (W, X) = Mpax (X)), trW = 1}
(confer for instance Overton [100}). For function (1.8) we then get

0f(y) = {b— AW): (W,C — AT(Y)) = Anax(C = AT(y)), W = 1, W € S}

10 CHAPTER 1. SEMIDEFINITE PROGRAMMING

by using standard rules (see Hiriart-Urruty and Lemaréchal [59]). Note that any
matrix W = vv”, with v € R™ being an eigenvector to the maximal eigenvalue of
X, is contained in the subdifferential of A\, at X.

Let § be an optimal solution of (EVP). If A = Apax(C — AT(%)) has mul-
tiplicity k, then there exists an n x k matrix P with PTP = I, and a matrix
U € S, with trtU = 1,U > 0 satisfying A = C — AT(g) and (C — AT (§))P = AP.
And since 0 € 8f(y) must hold, we have A(PUPT) = b.

Therefore, we can state the following optimality certificate. y is optimal for
(EVP) if and only if there exists P,U such that

PT(C - AT(y))P = A,

M= C - AT(y)

A(PUPT) =b (1.10)
PeR™ pTp =1,

UeS,ttU=1,U>0

Finally, we want to mention that assumption (1.7) is valid for many relaxations
arising from problems in combinatorial optimization.

1.4 On Solving Semidefinite Programming Prob-
lems

Semidefinite Programs are convex minimization problems and can therefore be
solved in polynomial time to any fixed prescribed precision, using for instance
the ellipsoid method, see Grétschel, Lovasz, and Schrijver [43]. In practice better
running times than the ellipsoid method are obtained by Interior-Point Methods
(IPMs), which have been intensively studied in the nineties.

During the last decade Bundle Methods led to an alternative way of solving
SDPs. The drawback of IPMs is that they are not capable of solving SDPs with
a large number of constraints. In the Spectral Bundle method the number of
constraints is not an issue and therefore this method is able to solve problems
which are out of reach to be solved by IPMs.

1.4.1 Interior-Point Methods

Over the last years, Interior-Point Methods turned out to be the most popular
algorithms for solving Semidefinite Programs. Most of the results go back to
the nineties, when Semidefinite Programming became a strong tool for solving
or approximating problems for several types of applications. Many variants of
IPMs have been developed, a survey can be found in the book of de Klerk [29].
It turned out that the most efficient variants are the so-called primal-dual
path-following methods, which we are going to explain here. The idea is to follow

1.4. ON SOLVING SEMIDEFINITE PROGRAMMING PROBLEMS 11

approximately a central path in the interior of the feasible region to reach the
optimum. This central path is obtained by replacing the optimality conditions
by “nearly” optimality conditions.

Throughout this section we make the following

Assumption 1.10 The Slater constraint qualification holds for (PSDP) and
(DSDP).

Let us recall the necessary and sufficient optimality conditions for (PSDP)
and (DSDP).

(OPT) A(X)=b, X € S} (primal feasibility)
AT(y)—C =2, Ze€ S}, ye R™ (dual feasibility)
ZX =0 (complementary slackness)

The idea is to replace the last condition by
ZX =ul

with ¢ > 0 and let 4 — 0. In order to derive this perturbed system, we define
the following auxiliary problem.

PSDP,) min (C,X) — ulogdet(X)
I
st. AX)=b
X eSH.

i > 0 is the so-called barrier parameter and — log det(X) the barrier function.
Dualizing the equality constraints, we get the Lagrangian

L,(X,y)=(C,X) — plogdet(X) + (y,b— A(X)) (1.11)

and compute the gradients with respect to X and y, respectively, in order to
derive the KKT-conditions, necessary for optimality.

VxLy = C—pX'—AT(y)
VoL, = b—A(X).
(Note that Vx logdet(X) = X~!.) Setting the gradients equal to zero, we get
(OPT,) A(X)=0b, X €S+
AT(y)+Z=C, Ze S}, yeR™
XZ =pl.

Theorem 1.11 Under Assumption 1.10, (OPT,) has for all p > 0 a unique
solution (X(p),y(n), Z(1))-

12 CHAPTER 1: SEMIDEFINITE PROGRAMMING

A proof can be found for instance in Nesterov and Nemirovskii [98], Vandenberghe
and Boyd [126] or Monteiro and Todd [96]. We define

Definition 1.12 (central path) The smooth curve {(X(u),y(n), Z(p)): p >
0} is called the primal-dual central path.

Let £ = (X,y,2),X € §*,Z € §}* be any point, not necessarily lying on
the central path. The goal is, to find A¢ = (AX, Ay, AZ), such that £ + A&
comes closer to the central path and iterate with smaller x until y is sufficiently
small (i.e. o — 0).

The system to be solved in order to find the appropriate A&, that would bring
the current point on the central path is:

AX +AX)=b
AT(y+Ay)—-C=Z+AZ (1.12)
(X +AX)(Z +AZ) = pul

This system has m + M + n? equations in 2@ + m variables. Due to the
fact that the product of two symmetric matrices is not symmetric in general, this
system of equations is overdetermined and we cannot apply the Newton method
to solve it. Many variations of system 1.12 have been proposed, to fix this and
to obtain reasonable search directions. Before explaining one of these search
directions, we sketch a generic primal-dual path-following algorithm.

Algorithm 1.13 (generic primal-dual interior-point algorithm) see Mon-
teiro and Todd [96]

Input.

o := (Xo, 0, Z0), Xo € S, Zo € S5+, € > 0.
Initialization.

Ho ‘= (Xo, Zo)/n

k:=0.

while p; > e or |JA(Xy — b)|loo > € or |AT(y) — C — Zi|loo > €
determine a search direction A&y from a linearized model of 1.12 for
W= oppk, ok € [0,1], such that AXy and AZ; are symmetric.
Epv1 = & + o A, where o, > 0 is chosen, such that
Xk+1 € S:"_ and Zk+1 € S,T‘*-
pir1 = (Xkt1, Zrs1) /7.
k:=k+1.
end

About twenty different search directions have been reviewed by Todd [123].
We will use the HKM-direction, that was developed independently by Helmberg,

1.4. ON SOLVING SEMIDEFINITE PROGRAMMING PROBLEMS 13

Rendl, Vanderbei, and Wolkowicz [56], Kojima, Shindoh, and Hara [74] and
Monteiro [95]. They solve the following system to obtain a search direction:

A(AX) =b— A(X)
AT(Ay) — AZ = Z+C - AT(y) (1.13)
ZAX +AZX =ul - ZX

These equations are solved for (AX, Ay, AZ) and then AX is symmetrized. Al-
though this idea seems quite simple, it is computationally very efficient. Theo-
retical convergence analysis shows, that for small € > 0 and appropriately chosen
i, in each iteration the full step yields a feasible solution. Moreover, a primal
and dual feasible solution pair (X, y) with duality gap less than & can be found
after O(y/n|loge|) iterations (see Monteiro and Todd [96]).

1.4.2 Spectral Bundle Method

In Section 1.3 we have shown the relation between Eigenvalue Optimization and
Semidefinite Programming. Helmberg and Rendl [55] developed the Spectral Bun-
dle Method, a machinery to solve problem (EVP) and therefore, use this as an
alternative to Interior-Point Methods for solving SDPs. Interior-Point Methods
fail for SDPs with a large number m of constraints, since in every iteration a
system of order m has to be solved. For these problems the Spectral Bundle
Method may still obtain solutions in reasonable time. We explain the algorithm
following [55] and [51].
Recall, that in Section 1.3 we introduced

F() == Amax(C — AT (y)) + b7y, (1.14)

the function to be minimized. Two ingredients are used to minimize this function:
the bundle concept and the prozimal point idea. To apply the bundle method, we
need to have a function f, approximating f in the neighborhood of the current
iterate. Introduce
L(W,y) == (C — AT (y), W) + b7y
With (1.9) we can now rewrite f(y) as
f(y) = max{L(W,y): W € S} ttW = 1}.

Replacing the feasible region {W: W € S}, trtW = 1} by a subset that is com-
putationally more efficient to handle, we have a minorant on f, that is easier to
handle than f itself. The proposed subset is

W={aW+PVPT:a+trV=1,a>0,V €S8}, (1.15)
where k is the number of columns in P and hence

fy) .= max{L(W,y): W € W}. (1.16)

14 CHAPTER 1. SEMIDEFINITE PROGRAMMING

P is constructed in a way, that it contains subgradient information of the current
iterate, but keeping r, the maximum number of columns in P, small for compu-
tational simplicity. (Note that parameter r controls the dimension of V.) To be
able of using more information without increasing r, W is used as an aggregate
subgradient. Before going into detail concerning the construction of P and W,
we explain the second ingredient of the Spectral Bundle Method, namely the
proximal point idea.

Due to the fact, that we deal with an approximation of f which is reliable
only in the neighborhood of the current iterate, one has to penalize displacement
from the current point, which results in

.2 u "
min f(y) + §|Iy—yllz, (1.17)

where u > 0 is the penalty parameter. Concerning this parameter, Helmberg and
Rendl [55] state the following

Remark 1.14 The choice of the weight u is somewhat of an art. There are
several clever update strategies published in the literature, see for instance Kiwiel
[71], Schramm and Zowe [118].

An iteration of the Spectral Bundle Method consists now in finding a new trial
point Y., and depending on how much progress is made at this point, we do a
serious step or a null step. To keep notation simple, we skip the iteration counter
in the subsequent description of an iteration of the Spectral Bundle Method. Let
g denote the current iterate. yYne, is obtained as the minimizer of (1.17), where f
is the minorant on f in the current iteration. This minimizer is obtained by first
solving

max (C — AT(§), W) + b7 — —(A(W) = b AW)—b) (L18)
weWw 2u
by an Interior-Point Algorithm (see Section 1.4.1) and from this we get Wy, =
a*W + PV*PT. The new iterate can then be easily computed by

rew = 9+ = (AWoew) ~ b). (1.19)
If this new iterate shows significant progress on finding the optimum, we make
a serious step and the current iterate becomes y,e,. Otherwise a null step is
made, i.e. the current iterate does not change, but information obtained during
this iteration is used to improve the model.

Updating matrix P is done as follows. As long as P does not contain r
columns, orthogonalize the new eigenvector with respect to P and add it as a
new column. If the maximum number of columns in P is attained, we exploit
the information available in o* and V*, being the maximizers of this iteration.

Let QAQT be the eigenvalue decomposition of V* and Q = [Q1, @], with @

1.4. ON SOLVING SEMIDEFINITE PROGRAMMING PROBLEMS 15

containing the eigenvectors associated to the ‘large’ eigenvalues of V*. Thus we
can rewrite the current maximizer

Wiew = PQ1A(PQ1)T + o'W + PQ2A2(PQ,)T. (1.20)

Then P, is computed such that it contains PQ; and at least one eigenvector
to the current maximal eigenvalue of C — AT (ypew), i.€. Phey is an orthonormal
basis of [PQ1 Unew). The remaining information contained in @, is included in
the new aggregate matrix Wpe, by computing

("W + PQ2A2(PQ2)T). (1.21)

new —

a* + tri,

In this way it is ensured, that the new aggregate matrix W pnew is contained in
Wnew~

We now have derived the necessary formulas for giving the formal description
of the algorithm.

Algorithm 1.15 (Spectral Bundle Method) Helmberg and Rendl [55]

Input.

Yo € R™ and eigenvector vy 10 Amax(C — AT (10)).

e > 0, improvement parameter my, € (0, 3).

weight v > 0, upper bound R > 1 on the number of columns of P.

Initialization.
k=0,z0 = yo, Po = vo, Wo = vo(vo)7.
Iteration.

1. (Direction finding.) Solve (1.18) and obtain yyy1 from (1.19).
Decompose V* into V* = Q1AM QT + Q2A2QT with rank(Q,) < R—1.
Compute Wy, using (1.21).

2. (Evaluation.) Compute Amax(C — AT (yr41)) and an ezgenvector Vkt1-
Compute Py, by taking an orthonormal basis of PeQVky:.

3. (Termination.) If f(zx) — fe(yks1) < € then stop.

4. (Serious step.) If f(yesn) < F(zk) — mu(F(ok) — Folisr)) then

set Tp41 = Yr+1 and go to step 6.
Otherwise continue with step 5.
(Null step.) Set Tpy1 = Tk

6. Increase k by 1 and go to Step 1.

S

For the proof of convergence the reader is referred to Helmberg and Rendl [55]. A
set of test graphs together with computational results for the Max-Cut relaxation
and the Lovdsz ¥-function (see Section 2.2) are provided in their paper. For
these instances the Spectral Bundle Method is by far superior than Interior-Point
Algorithms.

16 CHAPTER 1. SEMIDEFINITE PROGRAMMING

1.4.3 Software for Solving Semidefinite Programs

Interior-Point Algorithms, as well as the Spectral Bundle Method have been im-
plemented as open source software. Some of the Interior-Point Codes are running
under Matlab, for instance SeDuMi (Sturm [122]), or SDPT3 (Toh, Todd, and
Tiutiinci [125]), whereas e.g. CSDP by Borchers [24] is a C-code. The imple-
mentation of the Spectral Bundle Method is SBMethod (Helmberg). A list of
links to the various packages can be found on the Semidefinite Programming
Website maintained by Helmberg [49]. Mittelmann [94] runs a website, providing
benchmarks for many SDP-solvers.

Chapter 2

Combinatorial Optimization

As the name reveals, in Combinatorial Optimization one wants to find an element
out of a set of combinatorial objects that is the optimizer for some given objective
function. More specifically, we have the following setting.

e A finite set E = {ey,...,en},

a weight function w: E — Z, w(e;) being the weight of e;,

a finite family F = {F,..., F,}, F; C E (feasible solutions),

a cost function f : F — Z, f(F) =) .pw(e) (additive cost function),

a problem
opt{f(F): F € F},

where ’opt’ is replaced by either 'min’ or 'max’.

Usually, such problems can be formulated as Integer Programs with binary vari-
ables, which indicate for each member of the collection, whether it belongs to the
subset or not.

A lot of problems fit into this definition. For example partitioning, assignment,
covering, scheduling, shortest path, travelling salesman, spanning tree, matching,
ete.

Before the year 1950, problems of this kind were studied independently of
each other, for a historical survey see Schrijver {120]. Then Linear and Integer
Programming became a unifying research topic and thus relations between these
problems were found and exploited.

Over the past years new technologies in various areas like telecommunications,
VLSI-design, production planning, etc. became more rapidly changing. Combina-
torial Optimization turned out to appear in all of these applications and thus the
research interest grew, since knowledge about problem properties and solution
algorithms led to a competitive advantage. '

17

18 CHAPTER 2. COMBINATORIAL OPTIMIZATION

Many textbooks on Combinatorial Optimization appeared during the last
years, for a comprehensive collection on this subject we refer to Schrijver [119)].
Some Combinatorial Optimization problems that are of special interest in the
context of Semidefinite Programing are explained in this chapter.

2.1 The Max-Cut Problem

Let G = (V(G), E(G)) denote an edge-weighted undirected graph with vertex set
V(G) ={1,...,n} and m edges in the edge set F(G). Let w, denote the weight
of edge e = [ij], meaning edge e € E(G) links vertices ¢, 7 € V(G). The Max-Cut
(MC) problem consists in finding a partition of the set of vertices into two parts
so as to maximize the sum of the weights of the edges that have one end-node in
each part of the partition.

Let S be a subset of V. We denote a cut by

6(5) :={e € E(G): e=[ij],|S N {i,5}| =1},

hence 6(S) contains all edges having exactly one end-node in S, which are the
edges linking S and V(G)\S.

w(T) := Z We
ecT
is the sum of the weights on edges in T' C E(G) and therefore the value of the cut
given by 4(S) is given by w(6(S)) and the Max-Cut problem can be formulated
as
(MC) max w(4(S))
st. SCV(G).

Following the general formulation of a Combinatorial Optimization problem above,
set E equals the set of edges E(G), and F is the set of all cuts of G. The cost
function is the sum of the weights on the edges that form the cut and the objective
is to maximize these costs.

The Max-Cut problem is known to be NP-complete and is one of the problems
on the original list of NP-complete problems, investigated by Karp [66]. It is not
only of highly theoretical interest, but arises also in many contexts and therefore
has been well-studied over the last years. Goemans and Williamson [39] show that
the ratio between the optimal cut value and the solution value of the basic SDP
relaxation of Max-Cut (MCSDP) (see Section 3.3.2), is at least 0.878 provided
there are non-negative weights on the edges. Note, that Hastad [48] showed that
it is NP-complete to approximate the Max-Cut problem with a factor bigger than
0.9412.

Various heuristics for finding good solutions, and relaxations for getting tight
upper bounds have been developed. We will review some of them in Chapter 3.

2.2. THE STABLE SET PROBLEM 19

2.2 The Stable Set Problem

A stable set or independent set in a given graph G = (V(G), E(G)) is a subset
I of V(G) such that no two vertices in I are adjacent. The maximum stable set
problem is the problem of finding a stable set of maximum cardinality. This max-
imum cardinality is usually referred to as the stability number or independence
number of a graph and denoted by a(G).

a(G) = max{|I|: I C V(G),[ij] ¢ E(G) ¥, j € I}. (2.1)

The stable set problem is closely related to two other problems, namely the
maximum clique problem and the coloring problem.

A clique in a graph is defined as a subset @ of V(G) such that all vertices in
Q are joint by an edge e € E(G). The maximum clique problem is therefore the
problem of finding a clique with maximum cardinality, denoted by w(G),

w(G) = max{|Q|: Q C V(G),[ij] € E(G) Vi, j € Q}. (2.2)

With G = (V(G), E(G)) being the complementary graph of G = (V(G), E(G)),
it is easy to observe that

a(G) = w(G).
A coloring of a graph G = (V(G), E(G)) is a mapping §: V(G) — {1,...,k},
where {1,...,k} is the set of “colors” used, such that no two adjacent vertices

are assigned the same color. The minimum k is the so-called chromatic number
and is denoted by x(G),

x(G) = min{k: B(:) # B(j) for 3,5 € V(G) and [ij] € E(G)}. (2.3)

Since within a clique every vertex needs to be colored differently, we get the
following inequality:
w(G) < x(G).

This inequality can be strict, for instance consider Cs, a cycle with |V| = 5.
(w(Cs) = 2 and X(Cs) = 3.)

A graph is said to be perfect, if w(G') = x(G’) for all induced subgraphs G’
of G. This definition has been introduced by Berge, who also conjectured, that
a graph is perfect if and only if it does not contain an odd cycle of length > 5 or
its complement as an induced subgraph (Berge [20], [21]). This conjecture was
proved recently by Chudnovsky, Robertson, Seymour, and Thomas [28].

Lovész [88] introduced the ¥-number of a graph. This number is the optimum
of a semidefinite program and has the following property

a(G) < 9(G) < x(G). (2:4)

20 CHAPTER 2. COMBINATORIAL OPTIMIZATION

To compute the J-number, the SDP to be solved is:

(THETA) 9(G) = max eTXe
st. tr(X)=1
Xij =0 for i # j, [i7] € B(G)
X e St

e being the vector of all ones. (For equivalent definitions see Grétschel et al. [43]
and Knuth [72].) The dual to (THETA) reads

(DTHETA) min t

where J = ee”.

The problem of deciding for a given integer k, whether a(G) > k or x(G) < k
is NP-complete (Karp [66]). Moreover, Lund and Yannakakis [90] show that there
is a constant € > 0 such that no polynomial time algorithm exists that can achieve
ratio n® for the coloring problem unless P=NP. For the stable set problem Arora,
Lund, Motwani, Sudan, and Szegedy [6] show the existence of a constant € > 0 for
which there is no polynomial time algorithm that can find a stable set in a graph G
of size at least n~¢a(G) unless P=NP. On the positive side, Karger, Motwani, and
Sudan [64] use Semidefinite Programming for coloring a k-colorable graph with
maximum degree A with O(A'~%*,/log ATogn) or O(n'~%/*+1)/logn) colors.

The fact that the J-number can be computed in polynomial time and that it
satisfies the ‘sandwich’ inequalities (2.4) makes it valuable for many applications.
For perfect graphs it leads to the fact, that the maximum stable set problem
and the coloring problem can be solved in polynomial time, since equality for the
chromatic number and the clique number holds on these instances. For general
graphs the gap between 9(G) and a(G) can be arbitrarily large. However, Alon
and Kahale [2] state positive results about approximating a(G) via the ¥-number.

2.3 The Graph Partitioning Problem

A problem related to Max-Cut is the graph partitioning problem. Again, we have
a graph G. = (V(G), E(G)), |V(G)| = n, and edge-weights w,, e € E(G). Fur-
thermore, numbers k and m; > mg > - -+ > my are given, such that Zf=1 m; = n.
We now like to find a partition of V(G) into V1, Va,..., Vi and |Vi| = m;, i €
{1,...,k}, with a minimum total sum of the weights on the edges that are cut:

(GP) min Zl§s<t§k Ziew,jew Wrij)- (2.5)

This problem plays a major role in circuit design, for detailed applications we refer
to Lengauer [84]. In the special case of k = 2 and m; = my = n/2, the problem is
called the bisection problem. If there are no constraints on the cardinality of the

2.3. THE GRAPH PARTITIONING PROBLEM 21

subsets, than for k£ = 2 and maximizing the sum of the weights on the cut-edges,
we obtain the Max-Cut problem, see Section 2.1.

Let the columns of matrix X € {0,1}"**, X = (z;;), be the characteristic
vectors of the sets of the partition, i.e.

L_[1 ey
Y71 0 otherwise.

In order that each vertex ¢ € V(G) is in exactly one set V}, condition
X €L = €n

must be valid. (e, e, being the vectors of all ones of size k£ and n, respectively.)
Furthermore, to ensure that m; vertices are in the set V;, the constraint

T
X'e, =m,

m = (my,my, ..., mi)T, must be fulfilled.
Let A = (ai;) be the adjacency matrix of the underlying graph. The value

%trAXXT = %trXTAX

gives the sum of the weights on all edges that are not cut and therefore the weight
of the edges that are cut by this partition can be computed as

%(eTAe —trXTAX).
With L = Diag(Ae) — A being the Laplace matrix of the graph and the equality
trX T Diag(Ae)X = e Ae,
we can formulate problem (GP) as follows.

(GP) min trXTLX
st. Xep=e,
XTe, =m
X € {0, 1},

(2.6)

Barnes and Hoffman [15] and Donath and Hoffman [33] developed eigenvalue
based relaxations for this problem. The problem is relaxed to containing only
the constraint

XTX = Diag(m), X € R™**,

Through Theorem 2.1 Donath and Hoffman [33] obtain an eigenvalue based
bound.

22 CHAPTER 2. COMBINATORIAL OPTIMIZATION
Theorem 2.1 Let A and m be defined as above and set M := Diag(m). Then
1
|lw(uncut)] < max{§trXTAX: XTX = M}

1 k
= min{itrMYTAY: YTY = It} = 5 Y m;\(A).
Jj=1

N =

Thus we get

k
|w(cut)| > %(eTAe - ij)\j(A)).
. J=1
The proof can be found, for instance in Donath and Hoffman [33] or Rend! and
Wolkowicz {114].
Later on further SDP based bounds have been developed, confer Alizadeh [1],
Rendl and Wolkowicz [114], Wolkowicz and Zhao [127], Karisch and Rendl [65].
Besides that, formulation (2.6) is similar to the Quadratic Assignment Prob-
lem (QAP). The latest SDP relaxations of the QAP are investigated in the paper
of Rendl and Sotirov [112].

2.4 The Max-Sat Problem

In order to explain the Maximum Satisfyability problem, we first need to intro-
duce some notation. z,...,z, are Boolean variables and a literal z is either x;
or Z; (the negation of z;). A clause C of length k is the disjunctive combination
of k literals, i.e. C = 2,V ---V z, a weight w¢ is assigned to each clause C.
Clearly, clause C is satisfied, if at least one of the literals in the clause is assigned
value 1. The Max-Sat problem consists in finding an assignment of values 0 and
1 to the variables z1,...,z, such that the total sum of the weights of satisfied
clauses is maximized. Given an integer k£ > 1, with the additional requirement
that each clause has length at most k, the problem is called Max-kSat.

Max-Sat and Max-kSat are known to be NP-hard. Héstad [48] showed that
there is no (I + €)-approximation for any € > 0, unless P=NP.

Johnson [62] constructed a 3-approximation algorithm for Max-Sat. A linear
programming relaxation leads to the %-approximation of Goemans and Williamson
[38].

Via Semidefinite Programming, Goemans and Williamson [39] improved slightly
their %-approximation and obtained a 0.7554-approximation for Max-Sat.

Chapter 3

The Maximum Cut Problem

In this chapter we will take a closer look on one of the NP-complete combinatorial
optimization problems, the Max-Cut problem, already defined in Chapter 2. We
want to state some of the important properties and give an overview on solution
methods. It is easy to see, that the Max-Cut problem can be transformed to
a quadratic (0-1) problem and vice versa. We explicate this transformation and
point out an essential difference between Max-Cut problems and instances arising
from quadratic (0-1) problems.

3.1 Properties of the Max-Cut Problem

The Max-Cut problem on a graph G = (V(G), E(G)), previously defined in
Section 2.1, is given as

(MC) max w(d(S))
st. SCV(G).

For several applications the following notation will be more convenient. Let
V(G) := {1,...,n} be the vertex set of the given graph. The weights on the
edges are expressed through the weighted adjacency matrix A = (a;;), where

o we ife=[id] € EG)
W= %=) 0 otherwise.

Given A, we introduce the Laplacian matrix L = (l;;) associated to A, which is
defined as

ly = Z aix, Vi € V(G)

k=1
lLij = —aij, i # j, i,j € V(G),
hence L = Diag(Ae) — A.

23

24 CHAPTER 3. THE MAXIMUM CUT PROBLEM

A vector z € {£1}" represents a cut in the graph in the sense that the sets
{t:2; =1} and {i: z; = —1} form a partition of the vertex set of the graph, i.e.
S = {i:z; =1} and hence V\S = {i : z; = —1}. It is easy to verify, that the
weight of the cut given by S, can be computed as w(6(S)) = 3z7 Lz:

£ETL.T = ilux?‘i'z Z lijmisz
i=1

1<i<j<n

k13 n
= > O aw)+2 D (—ay)-1+2 Y (—ay)-(-1) =
i=1 k=1 [i7]¢8(S) [i7]€s(S)
= 2 Z a,-j + 2 Z (—a,’j) + 2 Z G,,;j =
[i7]eV(G) lis]¢8(S) [i]1€8(S)

= 4w(5(9)).

(Note that z;z; = —1 if [ij] € 6(S) and z;z; = 1 otherwise.) Hence, Max-Cut is
equivalent to
(MC) max zTLz
st. ze{£1}™
Another way of specifying a cut is via its incidence vector, a vector indexed by
the edge set of the graph and defined as follows.

Xe =1 0 otherwise.

(3.1)

Let CUT denote the cut polytope, i.e. the convex hull of all incidence vectors of
cuts of graph G,
CUT = conv{x’®: § C V(G)}.

Thus, a third version of formulating the Max-Cut problem is given by the follow-
ing linear program:
(MC) max wTy
s.t. yeCUT.

Many theoretical results of the cut polytope are elaborated in the book of Deza
and Laurent [32]. Barahona and Mahjoub [13] characterize the facet defining
inequalities of the cut polytope and show different methods for constructing these
inequalities from known ones. Other papers dealing with the cut polytope are
for instance Barahona [10], Poljak and Tuza [108], Poljak [105].

The Max-Cut problem is known to be NP-complete (Karp [66]) and it remains
NP-complete for some restricted versions, see Garey and Johnson [36]. However,
several classes of graphs are known for which the solution can be obtained in poly-
nomial time. To these classes belong graphs without long odd cycles (Grotschel
and Nemhauser {41]), planar graphs (Hadlock [45],0Orlova and Dorfman [99]), or
more generally graphs not contractible to K5 (Barahona [9]). More properties for
certain classes of graphs are surveyed in Poljak and Tuza [109).

(3.2)

3.2. QUADRATIC (0-1) PROGRAMMING AND RELATION TO MC 25

3.2 Quadratic (0-1) Programming and its Rela-
tion to Max-Cut

In this section we want to show, that solving a quadratic (0-1) problem and
solving a Max-Cut problem is essentially the same. Given a matrix @ of order n
and a vector ¢, define the quadratic function

q(y) =y Qy + "y. (3.3)

We consider the following unconstrained quadratic (0-1) program:

(QP) min g¢(y)
s.t. ZZ{O,I}". (3-4)

This problem is equivalent to (MC), which has first been pointed out by Hammer
[46]. The reduction from (QP) to (MC) has also been carried out in Barahona,
Jinger, and Reinelt [14], a compact table of the transformation can be found
in Helmberg [50]. For completeness we show in detail in the subsequent two
subsections how to transform one problem into the other.

3.2.1 (QP)— (MC)

Define

W= (oo *57)

and consider W to be the adjacency matrix of a graph with vertex set V =
{0,1,...,n}. Then the Laplacian is given by

L = Diag(We)-W =

_ 0 (Qe+)T eTQe+cTe 0)
o ((Qe+¢) Q) - 0 Diag(2Qe +¢) /-

Let z denote the incidence vector of a cut of this graph with value izTLx. With-
out loss of generality we can assume zo = 1. Then, y defined as

1
yi=§(xi+1); IS'LSTL

is a vector in {0,1}" and therefore solution of (QP).
The solution value of (MC) of the adjacency matrix W expressed in terms of
y through the equality z; = 2y; — 1, 1 <7 < n is the following:

26 CHAPTER 3. THE MAXIMUM CUT PROBLEM

'Lz = (zyl_e)T(< (Qe0+c) (Qeéc)T)
- (Q(Oi) Diag(2226+0))) (2@/1—6) -
= < 2y1——e> ((Qe0+c) (Qegc)) (2y1—e>

q(e) A
~ \ Diag(Qe) + Diag(Qe + ¢)) (e) -
= (0+4(Qe+c)"y — 2q(e) + 4y"Qy — 4" Qy + € Qe)

—(q(e) + e"Qe +g(e)) =
= 4y Qy+ Ty —q(e)).
Therefore,)

4:vTL:1: + q(e).

Yy Qy+cly=

3.2.2 (MC)— (QP)
Conversely, let be given a graph with node set V = {0,1,...,n} and the (n +

1) x (n + 1) Laplacian
(3 1)
Ly Ly

where Ly, is a n X n matrix. Let y be a solution of (QP) with Q = L,» and

¢= L3 — Lye. Then, T = (:;0), o € R,z € R™ defined as

=1 z=2y—e

is a vector {£1}"*! and therefore a solution of (MC). The value of the cut
associated to this solution, in terms of y is as follows:

a(y) = y"Qy+cTy

= y Loy + (L12 — Lne)Ty
1 1

= Z(x +e)Lo(z+e)+ §(L12 — Lose)(z +€)
1 1

= Z(ivTLzz.’L'T + 2€TL22(E -+ CTL22€) + 5([/{233 + sze - eTLzziE - eTnge)
1

= Z(xTngfB + 2L’{21E + 111 - l11 - eTnge + 2L{2€)

1
= Z:iTL.’f - (lu - 2L'{26 + eTnge).

3.3. RELAXATIONS OF THE MAX-CUT PROBLEM 27

Therefore,

| rf ln —L%
25TIE = 12) .
el av) +e (—Lm Ly) ©

3.2.3 (MC) vs. (QP)

For all algorithms available, it turned out that solving instances of (MC) seems
to be a much harder job than solving instances arising from (QP). In order to
investigate this behaviour, let us take a closer look on two random instances. We
generate an unweighted random graph with n = 25 vertices and edge-probability
%. Also, we generate a random instance of (QP), where all entries in @ and c are
chosen from [—100,100]. Due to the small size of these problems, we are able to
enumerate all 22¢ solutions, and plot the sorted and normalized objective values
in Figure 3.1.

The picture nicely shows that objective values of the (QP) instances are quite
evenly spread over the interval of possible values. Contrary, for (MC) the density
of cut values in the top quarter of the interval is clearly much higher than in the
remaining part. For the (MC) instance, half of the solution values are within
25% of the optimum, whereas for the (QP) instance only 0.5% are in that 25%
region.

It is evident that the optimal solution is much harder to identify when ten-
thousands of solutions lie within a 5% interval of the optimum, as it is the case
of the (MC) instance, whereas for the (QP) instance only a few hundred are
that close. (The bottom-plot in Figure 3.1 shows for both problems the best
10,000 objective values.) Therefore, solving problems originated from (MC) are
obviously more challenging than (QP) problems.

3.3 Relaxations of the Max-Cut Problem

In this section we recall the most popular relaxations of the Max-Cut problem
together with some of the recent methods for solving it to optimality. We sketch
the algorithms and summarize their limits. A survey of techniques developed
before 1980 can be found in Hansen [47].

3.3.1 Relaxations Based on Linear Programming

Consider the linear program (3.2). For a graph G = (V, E) define y € R¥ as
Y(E) := > .cg Ye- The observation that any odd cycle intersects with a cut on an
even number of vertices motivates the construction of the odd cycle inequalities:

y(F) — y(C\F) < |F| — 1 for each cycle C C E, F C C, |F| odd. (3.5)

A special class of odd cycle inequalities are the triangle inequalities, which arise
when C in (3.5) is a cycle of length three, i.e. a triangle. For F' = C (hence

28 CHAPTER 3. THE MAXIMUM CUT PROBLEM

09

095+
09t
0.85F 1.

08} el
0.75
0.7H
0.65
06}

0.55}

0.5
0

1

0.98 "
0.96 -
0.94
0.92f

09
0.88F
0.8}

0.84

0.82 " L " 2 ') s — :
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 3.1: Random data, n = 25. Plot on top: sorted and normalized cost values
for an unweighted random graph (dashed-dotted line) and a random QP instance
(dashed line). Plot in the middle: plotting only those values, which are within
50% of the optimum. Plot on bottom: zooming in to the 10,000 best solutions.

3.3. RELAXATIONS OF THE MAX-CUT PROBLEM 29

|F| = 3), we get the inequality y(F) < 2 and for F C C (|F| = 1) we obtain
y(F) —y(C\F) < 0. So, if C is formed by the edges [ij], [ik], [jk], we obtain

Yij T Yk + Y < 2
Yij —Yik — Y < 0
~Yij+ Yk —Yir < 0
—Yii Yk +Yir < 0
The odd cycle inequalities and also the trivial inequalities 0 < y, < 1l,e € F
are all valid for any y € CUT (the cut polytope, see Section 3.1). Therefore,
a linear programming relaxation of the Max-Cut problem can be derived by
replacing the constraint y € CUT in (3.2) by the odd cycle inequalities and
0 < y. < l,e € E. Nevertheless, this LP has then an exponential number
of inequalities and therefore an attempt of feeding this problem into some LP
solver might already fail when specifying all the constraints. On the other hand,
Grotschel, Lovész, and Schrijver [42] show that one can optimize a linear objective
function over a polytope in polynomial time if and only if one can solve the
separation problem for this polytope in polynomial time. Barahona and Mahjoub
[13] give a polynomial time algorithm for separating the cycle inequalities and
thus a cutting plane approach can be developed, where the LP relaxations can
be exploited by using the cycle-inequalities in an iterative algorithm.
Barahona et al. [14] designed such a cutting plane algorithm within a Branch
& Bound framework that uses these inequalities. They solve in the root node the
trivial LP

(3.6)

max wly
st. 0<y.<1l,e€ekFE

and generate then cutting planes not only at the root, but also at each node of
the Branch & Bound tree. They sketch the cutting plane procedure performed
at each node as follows:

begin
repeat
solve LP;
obtain lower bound,;
if successful then try to fix variables;
try to generate cutting planes;
revise LP;
until no cutting planes generated;
if LP solution feasible
then backtrack
else branch
end

To obtain a lower bound (i.e. finding a cut in the graph), a heuristic is
applied to the solution obtained by solving the LP. This heuristic computes a

30 CHAPTER 3. THE MAXIMUM CUT PROBLEM

maximum spanning tree in the original graph with edge weights |y.—1| (y € RZ is
the LP solution) and assigns the vertices to one of the two subsets of the partition
according to the weights on the edges of this tree. This yields a feasible solution
to the Max-Cut problem.

The lower bound serves for fathoming nodes in the Branch & Cut tree, but
is also used for fixing variables. If y, = 0 and z;.p — d. < zp, where z.p is the
objective function value, d € RF the reduced cost vector and zz the value of the
best known cut in G, clearly we can fix the variable associated to this edge to 0.
Similarly, if y. = 1 and zyp + d. < zF, we can fix the variable to 1. Furthermore,
edges, that belong to a subgraph induced through the edges fixed to 0 or 1, can
be fixed by logical implications.

Odd cycle inequalities are used to generate cutting planes. Several ideas
are incorporated for finding violated odd cycle inequalities. Barahona et al. [14]
proceed according to the following order, until violated inequalities are found:

1. Enumerate all 3-cycles.

2. Apply a coloring heuristic for finding violated odd-cycle inequalities. This
heuristic guarantees, that in an integral solution, that is not a cut, violated
odd-cycle inequalities will be found.

3. Apply a spanning tree heuristic to detect violated odd-cycle inequalities.

4. Use exact separation (see Barahona and Mahjoub [13]).

Branching is done by choosing the variable z, with fractional value closest to
%, and among those one with maximum absolute objective function coefficient.

Recent results on a refinement of this LP based cutting plane algorithm are
due to Liers, Jiinger, Reinelt, and Rinaldi [87]. They focus on solving toroidal
grid graphs arising from physical applications. Since these graphs are sparse, LP
based method are the proper tool for solving these instances.

Limits of this method: The computational results presented in Barahona
et al. [14] show that graphs of any density up to n = 30 nodes can be computed
in reasonable time. But with an increasing number of nodes, the limits on the
density of the graphs decreases rapidly. Graphs with n = 100 nodes can only
be solved, if the edge density is at most 10%. The algorithm of Liers et al. [87]
solves 3-dimensional toroidal grid graphs with Gaussian distributed weights of
size 7 X 7 X 7 within minutes and 2-dimensional of size 20 x 20 within seconds.
However, for dense instances also this algorithm is not practical.

3.3.2 A Basic SDP Relaxation

Consider (MC) formulated as (3.1) and do a transformation of variables, namely

X = zzT.

3.3. RELAXATIONS OF THE MAX-CUT PROBLEM 31

Hence X has the properties that it is positive semidefinite, it has rank one and
all diagonal elements are equal to one. Furthermore, the value of a cut associated
to X can be computed as

1 . 1 1

-z L = -t = - .

1% Le=7 rLX 1 (L, X)
Thus an equivalent formulation of the Max-Cut problem is

(MC) max (L, X)
s.t. diag(X) =e
rank(X) =1
XeS, X =0

A semidefinite relaxation can be obtained by simply dropping the rank-1 con-
straint:

(3.7)

(MCSDP) max (L,X)
st. diag(X)=e (3.8)
Xes, X»0.
Its dual form
(MCDSDP) min eTu
s.t. Diag(u)— L >0
was introduced by Delorme and Poljak [30] as the (equivalent) eigenvalue opti-
mization problem

(3.9)

(MCEIG) min nMApa(L — Diag(u))
st. uTe=0 (3.10)
u € R™

The primal version (MCSDP) can be found in Poljak and Rendl [107].
The model (MCEIG) is used in Poljak and Rend! [106] as the bounding
routine in a Branch & Bound framework.

Limits of this method: This basic SDP bound can be computed rather
cheaply by using for instance an Interior-Point algorithm. However, within a
Branch & Bound scheme the progress of the bound at each node of the B&B tree
is disappointingly small and therefore the number of nodes in this tree becomes
rather large, already for medium sized problems. The maximum cut in graphs
up to n = 50 nodes can be computed quite efficiently, but for larger n a solution
in reasonable time can only be obtained for instances where the initial gap is
already very small.

Further SDP based MC relaxations. This basic relaxation has been ex-
ploited in various ways during the past decade. For example it can be strength-
ened by the so-called hypermetric inequalities. Other relaxations of (MC) arising
from SDP are the so-called lift-and-project methods. A separate chapter is ded-
icated to these SDP relaxations (Chapter 4).

32 CHAPTER 3. THE MAXIMUM CUT PROBLEM

3.3.3 Convex Quadratic Relaxations

Billionnet and Elloumi [23] came up with the idea of convexifying the objective
function and then using a Mixed-Integer Quadratic Programming (MIQP) solver
for solving problem (3.4). Their algorithm works in detail as follows. Consider
problem (QP) and define for any vector u € R™ the Lagrangian

q.(z) == q(z) + Z ui(z; — 17) = t7(Q — Diag(u))z + (¢ + u)Tz.

i=1

It is easy to see, that an equivalent problem to (QP) is

(QP,) min g,(z)
st. z€{0,1}" (3.11)
Relaxing the integrality constraint in problem (QP,) gives the lower bound 5(u)
on (QP), .
B(u) = min g,(z)

st. 0<z;<1,7e{1,...,n}.

If the vector u is chosen, such that @ — Diag(u) is positive semidefinite, B(u) is
obtained by solving a convex quadratic problem, which can be done efficiently.
Now, if u* is the maximizer of B(u), the “optimal” lower bound §* will be ob-
tained, i.e.

B* = B(u") = max{f(u) : (@ - Diag(u)) = 0,u € R"}.

Billionnet and Elloumi [23] observe, that the dual to this SDP coincides with the
basic Max-Cut relaxation (MCSDP), see Section 3.3.2.

The solution of problem (QP,) (or (QP,:), respectively) can be derived
by using an MIQP solver, i.e. a Branch & Bound algorithm using S(u), the
continuous relaxation of (QP,), as bound.

The computational effort for this algorithm can be summarized as follows:

e Preprocessing phase: solve an SDP to obtain a vector v* and a bound 3*.

e Use an MIQP solver for solving problem (QP,:). Even though the compu-
tation of the bounds is very cheap, the number of nodes in the Branch &
Bound tree typically exceeds 100,000 for problems of n = 100 variables, as
reported in [23].

Limits of this method: Quadratic problems with some special structure can
be solved up to n = 100 variables. But the method is not capable of solving
certain classes of Max-Cut instances of this size (for example, graphs with edge
weights chosen uniformly from {-1/0/1}).

3.3. RELAXATIONS OF THE MAX-CUT PROBLEM 33

3.3.4 Second-Order Cone Programming Relaxations

Kim and Kojima [68], and later on Muramatsu and Suzuki [97] use a second-
order cone programming (SOCP) relaxation as bounding routine in a Branch &
Bound framework to solve Max-Cut problems. Second-order cone programming

is a special case of symmetric cone-programming. The second-order cone K, is
defined by

K, = {:EER": T > wa }
i=2

SOCP can be used to relax nonconvex quadratic problems. Muramatsu and
Suzuki [97] propose an SOCP relaxation of (MC) that includes convex quadratic
constraints, which reflect the structure of the graph. They are able to incorporate
the triangle inequalities (see Section 3.3.1) to tighten the feasible region efficiently.

However, the basic SDP relaxation (see Section 3.3.2) performs better than
their SOCP relaxation and the method works only for sparse graphs.

Limits of this method: The algorithm is capable of solving very sparse in-
stances only. The largest graphs for which solutions are reported are random
graphs (weights between 1 and 50) of n = 120 nodes and density 2%, and graphs,
which are the union of two planer graphs up to n = 150,d = 2%.

3.3.5 Branch & Bound with Preprocessing

Pardalos and Rodgers [102], [103] solve the quadratic program by Branch &
Bound using a preprocessing phase where they try to fix some of the variables.
The function to be minimized is (3.3). The test on fixing the variables exploits
the fact, that if z* is the global solution of

min{q(z) : z € S}
(S being a convex compact set), then z* is also optimal for the linear program

min{(Vq(z*))Tz : z € S}.

Limits of this method: Similar to the cutting plane technique in Barahona
et al. [14], dense instances up to n = 30 and sparse instances up to n = 100
can be computed. Special classes of instances can be solved efficiently up to
n = 200. These instances have off-diagonal elements in the range [0, 100] and
diagonal elements lying in the fixed interval [—I,0], for the case I = 63 (the
density is 100%). For other values of I, the problem may become much more
difficult to solve. However, the method fails for general dense problems with
n = 50 variables.

34 CHAPTER 3. THE MAXIMUM CUT PROBLEM

3.4 A Rounding Heuristic Based on SDP

The basic SDP relaxation (MCSDP) can be used to obtain a feasible solution of
the Max-Cut problem, i.e. to generate a cut. This method is called the Goemans-
Williamson hyperplane rounding technique [39] and works as follows. Let X =
(z;;) be the optimal solution of (MCSDP). We have to find vectors vy, ..., v,,
v; € R* (for some k < n), such that Ty = vf v;. This can be done, by computing
the Cholesky Factorization VTV of X, with V € R**™. Some random vector r is
then used to set
S:={i:vlr>0}

and obtain in this way a cut 6(S). This process can be iterated with varying
random vector r.

The cut obtained by this hyperplane rounding technique may be further im-
proved by flipping single vertices. Also, instead of the solution matrix X of the
SDP, a convex-combination of this matrix X with some cut-matrix zz” used to
find the Cholesky factorization may improve the result.

Summarizing, generating good cuts can be done iteratively in basically three
steps:

1. Apply the Goemans-Williamson hyperplane rounding technique to the pri-
mal matrix X obtained from solving the (MCSDP). This gives a cut-vector
z.

2. The cut z is locally improved by checking all possible moves of a single
vertex to the opposite partition block.

3. Bring the rounding matrix towards a good cut by using a convex-combination
of X and zzT. With this new matrix go to 1. and repeat as long as one
finds better cuts.

Chapter 4

SDP Relaxations of the Max-Cut
Problem

In the previous chapter several properties and solution approaches of the Max-Cut
problem have been investigated and we gave a brief description of a basic semidef-
inite relaxation. In this chapter we want to focus on models, that use Semidefinite
Programming for obtaining upper bounds to this NP-complete problem.

4.1 The Basic Relaxation

The basic Max-Cut relaxation has already been derived in Section 3.3.2 as follows:

(MCSDP) max (L,X)
s.t. diag(X)=e (4.1)
Xes, X>0

and its dual form

(MCDSDP) min efu

s.t. Diag(u) — L = 0. (4.2)
We denote the feasible set of (MCSDP) as
E,:={X €8, diag(X) =e, X = 0}, (4.3)

called the elliptope. A study of this convex set can be found in Laurent and
Poljak [78], [79].

As already mentioned in Section 2.1, for graphs with non-negative edge weights,
the optimal solution of (MCSDP) is at most 14% above the value of the maxi-
mum cut [39].

Several strategies have been applied for strengthening this SDP-based relax-
ation. We will explore these methods in the subsequent sections.

35

36 CHAPTER 4. SDP RELAXATIONS OF THE MAX-CUT PROBLEM

4.2 Strengthening the Basic Relaxation

In Section 3.3.1 we introduced the odd-cycle inequalities, and as a special case
of it, the triangle inequalities, to strengthen the LP relaxation of the Max-Cut
problem.

Similar to the LP case, also the SDP bound can be improved by exploiting
the observation, that in any cycle of length three, exactly zero or two edges are
cut. Considering matrix X = (z;;) representing a cut, the following inequalities
must be valid forall 1 <i< j <k <

Tij + T + T > —1

Tij — Tik — Tjk = —1 (4.4)
—Tiyj + Tig — Tjp 2 —1 '
—Tij — Tk +Tjp 2 —1

The polytope containing all matrices X € S, with diag(X) = e and satisfying
inequalities (4.4), is called the metric polytope and denoted by MET.

MET :={X € S,: diag(X) = e, z;; + Ta + zj1 > —1,
Tij = Tik = Tjk 2 —1, —Ti5 + T — Tjp 2 —1, (4.5)
—ZTij — Tig + Tjk 2> —1}.

This leads to the following relaxation, proposed in Poljak and Rendl [107]:

(SDPMET)’ max (L, X)
st. X € MET (4.6)
X=0

The number of inequalities of (SDPMET) is growing rapidly with increasing di-
mension n. Including all these triangle inequalities and then solving the program
by an Interior-Point Method (see Section 1.4.1) is intractable already for small
n. Computational results of solving this SDP with successively including the
4(3) triangle inequalities can be found in Helmberg et al. [56]. Results are also
given in Rendl [111], where only a limited number of these triangle inequalities
is considered.

A more general class of inequalities are the hypermetric inequalities, studied
in Deza and Laurent [31]. Let b be an integer vector with ., b; is odd. This
guarantees that

|zTb] > 1 for all z € {£1}".

The following equivalences always hold:
|zTb] > 1 & (2Tb)(zTb) > 1 & (zz”,bbT) > 1.

And therefore the hypermetric inequalities must be valid for all matrices in the
cut polytope.

4.3. LIFT-AND-PROJECT METHODS 37

The triangle inequalities can be derived as a special case of the hypermetric
inequalities by setting for the triangle formed by the vertices 1, , k:

bizbj:bk=1,bl=0, Vl¢ {’L,j,k}

and
b; = bj =1, b= -1,b,=0, Vi ¢ {7‘7-77k}

Helmberg and Rendl [54] use the hypermetric inequalities as cutting planes
and solve the SDP by an Interior-Point Code. At the initial step of the algorithm
they consider the basic semidefinite relaxation (4.1). Inequalities are added while
solving the relaxation (i.e. after some Newton steps), as well as after the exact
solution to the relaxation has been obtained. Then the optimization process
is restarted again. Later on, Helmberg [50] improved this algorithm by fixing
variables.

This algorithm has been used in a Branch & Bound framework. In Helmberg
and Rendl [54] several branching rules are considered and discussed carefully.
Although the relaxation produced very tight bounds, the results of the Branch
& Bound code remained below the expectations of the authors. The number of
nodes in the Branch & Bound tree is very small, but the computation time per
node may be rather large. Most graphs up to n = 50 vertices can be solved in
the root-node of the Branch & Bound tree. Instances up to the size n = 100 can
still be solved, but the computational effort may be very high. Graphs with more
than 100 vertices are intractable for this algorithm.

4.3 Lift-and-Project Methods

Since the nineties several approaches have been developed to construct relaxations
to NP-hard problems by representing the polytope over which we want to optimize
as the projection of another polytope lying in a higher dimensional space. They
can be classified into the BCC method due to Balas, Ceria, and Cornuéjols [8], the
SA method by Sherali and Adams [121], the LS method of Lovész and Schrijver
[89], and the method of Lasserre [76]. Details and relations about these lift-and-
project methods can be found in the papers of Laurent [77] or Laurent and Rendl
[80].

4.3.1 The Lifting of Anjos and Wolkowicz

Anjos and Wolkowicz [3] introduced an SDP relaxation for Max-Cut via a sec-
ond lifting. They obtain the relaxation by adding redundant constraints to
(MCSDP) and then use Lagrangian duality for deriving the dual of the dual.
After a second lifting they end up with a relaxation called (SDP3), which is the

38 CHAPTER 4. SDP RELAXATIONS OF THE MAX-CUT PROBLEM
following:

(SDP3) max (Hp,Z)
s.t. diag(Z) =e
Zosiy =1(G€{1,...,n}) (4.7)
Zo16.5) = Z16K),T(kg) (Y, 1 <i<j<n)
Z € Syny+1, 2= 0.

Here, t(i) = i(i + 1)/2 and

oy [=D i)
T, j) = { t(z—1)+j otherwise.

The matrix in the objective is

_ 0 dsvec(L)T
Hr= <%dsvec(L) 0

where dsvec is the operator that forms a t(n)-vector columnwise from an n x n
symmetric matrix while ignoring the strictly lower triangular part and multiply
the off-diagonal entries by two.

Another way to derive this relaxation is as follows. Let v € {+1}" be a vector
representing a cut and z € R{™+1 indexed by {0} UV (K,) U E(K,), K, being
the complete graph on n vertices, and E(K,) denoting the set of all subsets of
V(K,) of cardinality two (thus, representing all edges in the complete graph).
Define

zp =1
2y = v, 1 € {1,...,n} (4.8)
Z45) =0y, 1<i1<j<n
Thus,
1
(L)
U1
vA
2= | v |, 2e {£1pmH
VY5
\ Un—l,n }

4.3. LIFT-AND-PROJECT METHODS 39

and zzT yields the following matrix:

{ Zop Zy (1) Zogksy)
Zi)0 23}, 4} 23}k 1}
7 =227 =
20 | Zighi Z{i 3} (k1)

If this matrix corresponds to a cut, through the equalities
Z{iky {kg) = Z(ik) 2k} = ViVkURY; = ViVij = Vit = Zo,(ij),

which hold for all ¥ and 1 < i < j < n, we obtain the following set of triangle
equalities: '
ZGgy iRy = Zogiky
Zuxy kY = Lo fig) 1<i<ji<k<n (4.9)
Zaaniiky = Zogiky
Also, clearly all the elements in the main diagonal have to be one, since (v?)? =1
and (viv;)> = 1. And via Zp ;) = v? = 1 we obtain (SDP3), using a slightly
different way of indexing matrix Z (with rows/columns permuted in H;, and Z).

(SDP3) max (Hp,Z)
s.t. diag(Z)=e
Zogiy =1 (ie{l1,...,n}) (4.10)
Zo(igy = Z(ikyikgy (VK 1< <j <n)
Z € St(n)+1, Z > 0.

The leading principal minor of any matrix satisfying the constraints of (SDP3) is
det (}}) = 0 and therefore every feasible Z is singular (see Lemma A.2). Hence,
(SDP3) has no strictly feasible points. Anjos and Wolkowicz [3] show that
matrix Z € Syn)+1 can be projected on the lower dimensional space of dimension
t(n — 1) + 1 without loosing sparsity of the constraints. We want to give an
alternative and maybe more intuitive proof below. Before, we make the following

Observation 4.1 Let Z € Syy)41 be feasible for (SDP3) and let Z be indezed
by {0} UV (K,) U E(K,). Then Z is always of the form

1 e §T
Z=1¢e el esT |,
s sef' S

where e € R™ is the vector of all ones, s is a vector of length t(n — 1) and
S e St(n—l)-

40 CHAPTER 4. SDP RELAXATIONS OF THE MAX-CUT PROBLEM

Proof: Consider any Z from the feasible set of (SDP3), with the following block
structure:

1 ol §T
Z=\{u U RT |,
s R S

with u € RV(Kn) s ¢ RE(X)_ In order to prove the observation, we have to show
that

u=ce, U=-eel, R=se.

Because of the constraint Zg (;; = 1, we have u = e.
Then the leading 3 x 3 principal submatrix of Z reads

1 1 1
1 1 U112
1 U192 1

Since every principal minor of a positive semidefinite matrix has to be non-
negative (see Theorem A.1) we get

U2 = 1.

Similarly we can derive, that any other u;; has to be equal to one if Z is positive
semidefinite, and thus we obtain U = ee”.
In the same way we get, for the principal submatrix formed by the rows/columns

{0, {k}, {i, 51}

1 1 S{i,j}

1 X).

Sy TeRLG 1

that 7} (ij) = S(i,;3 must hold and therefore we end up with R = seT and we
have proved the observation. O

Theorem 4.2 Let Y € Sy_1)+1 be indezed by {0} U E(K,), E(K,) being the
collection of all the subsets of V(K,) of cardinality two. (V(K,) is the set of
vertices of the complete graph on n vertices.) Let QL be defined as

Q= 3> il usvec(L)T
L= \ usvec(L) 0 ’

where usvec(L) forms a vector columnwise from a symmetric matriz considering
only the strictly upper triangular part of the matriz. Consider the following SDP.

(SDP3p) max (Qr,Y)
s.t. diag(Y)=e
Vo651 = Yikniegy (Ve ¢ {i,5}, 1<i<j<n)
Y € Syn-1)+1, ¥ = 0.

There is a bijection between the feasible sets of (SDP3) and (SDP3p).

(4.11)

4.3. LIFT-AND-PROJECT METHODS 41

Proof: Let F C Siymy+1 be the set of matrices feasible for (SDP3) and Fp C
Sin-1)+1 the set of matrices feasible for (SDP3),. Define f: F — Fp, as

H(2) = Zgyuxa):

meaning that f(Z) is the principal submatrix of Z, that contains only the rows
and columns indexed by {0} U E(K,,), hence we simply erase the columns indexed
by V(K,). (Note, that it is easy to verify that every Y in the image of f is feasible
for (SDP3p).)

Due to Observation 4.1, every matrix Y € Fp can be extended to a Z € F
in a unique way. The fact that it is possible to extend Y to a feasible Z implies
that f is surjective, and because of the fact, that this way of extending is unique,
f is injective. Thus, f is a bijection between F and Fp. O

Anjos and Wolkowicz [3] prove that relaxation (SDP3p) lies in the elliptope
and satisfies all the triangle inequalities. Thus, the bound of this relaxation is at
least as good as the bound obtained by solving (SDPMET), which is already a
strengthening of (MCSDP) (see Section 4.2). In fact they prove,

CUT C F CENMET

and show that these inclusions are strict for n > 5.

They also present numerical results for graphs up to n = 12 vertices and
observe, that the (SDP3p) relaxation often yields the optimal value of (MC).
Nevertheless, since the dimension of the matrix is (;) 4+ 1 and the SDP has
1+ (3) 4+ 3(3) linear equality constraints, it is out of reach to solve it for graphs
of size n = 50.

4.3.2 The Lifting of Lasserre

Consider the general problem

max cx
st. Az <b (4.12)
z € {0,1}

and denote
K :={z€[0,1)]": Az <b}, P:=conv({z € {0,1}": Az < b}).

Lasserre [76] constructs a hierarchy of semidefinite relaxations Q; of P with the
property

K2Qo(K)D2QuK) 2 2 Qua(K) 2Qu(K) = P.

42 CHAPTER 4. SDP RELAXATIONS OF THE MAX-CUT PROBLEM

The motivation for these relaxations comes from results about moment matrices.
A detailed study and the proof of convergence can be found in Lasserre [76] or
Laurent [77].

Applied to the Max-Cut problem, relaxation (Qo) coincides with the basic
SDP relaxation (MCSDP). The relaxation (Q;) is the following:

(Q1) max (ML,Y)
s.t. diag(Y)=e
Yo gy = Yirniksy (Vg {i,j},1<i<j<n)
Yiannky = Yiny ey = Yiik),(in)
(for all distinct 2,4, h, k € {1,...,n})

(4.13)

D)+

Clearly, this is a strengthening of (SDP3p), introduced in the previous section.
The constraints additional to (SDP3p), we call them 4-cycle equalities, can also

be motivated as follows. Consider y € R(3)*!, with

yp =1
Yegy =uivy, 1<i<j<n (4.14)
with v € {£1}", and Y constructed as Y = yy”. Then, for all distinct 7,5, h, k €
{]" R 7n}, we Obtain

}/{i7j}a{hrk} = y{"v]}y{h’k} = Uivjvhvk = y{i:h‘}y{j!k} = }/{i3h}1{jxk}’

and
Yiig)ihk = Y(i5}Yink} = ViViUhUk = Y k)Y (50} = Y{ikh(n)-

Similar to (SDP3p), for various graphs, the optimal cut value can be found via
(Q1). Nevertheless, the number of constraints is 1+ (}) + 3(;) + 2(}) and thus
the SDP is intractable to be solved already for graphs on a few vertices.

4.4 Between the Basic Relaxation and a First
Lifting

Optimizing over the Anjos-Wolkowicz or the Lasserre relaxation, introduced in
the previous sections, amounts to solving an SDP having a matrix variable of
order (7) +1 and in case of Anjos-Wolkowicz we have to deal with 1+ (3) +3(3)
linear equalities, in the case of Lasserre with 1+ ('2‘) +3(;’) +2(2) linear equalities.

In Table 4.1 some numbers are listed, giving the sizes of the SDPs to be
solved. In the first column the number of vertices is given. The second column
shows the number of edges of the complete graph, i.e. the dimension of the matrix
variable minus one. In the third column the numbers of constraints (additional

4.4. BETWEEN THE BASIC RELAXATION AND A FIRST LIFTING 43

n o) 3(%) 2(7 vertices edges | 3k l
10 45 360 420 40 412 | 3689 23020
20 190 3420 9690 100 581 | 3126 9054
30 435 12180 54810 200 496 | 891 689
50 1225 58800 460600 216 857 (1926 3831
100 4950 | 485100 7842450 343 1365 | 3069 6117
200 19900 | 3940200 129369900 512 2041 | 4590 9159
Table 4.1: Problem sizes, complete Table 4.2: Problem sizes, sparse
graphs graphs

to the all-ones diagonal constraints) for Anjos-Wolkowicz are listed (i.e. three
times the number of triangles) and column four shows the number of constraints
to be added to the Anjos-Wolkowicz relaxation when solving the SDP proposed
by Lasserre.

Because of the huge number of constraints, the relaxation of Lasserre is in-
tractable, already for graphs on a few vertices. The Anjos-Wolkowicz relaxation
can be solved for small instances, but both the dimension of the matrix variable
and the number of constraints increase very fast and thus, the problem of obtain-
ing a bound for a graph on 50 vertices by the Anjos-Wolkowicz model cannot be
solved anymore.

However, in Table 4.2 the numbers of vertices, edges, triangle-constraints and
4-cycle constraints of some sparse graphs are given (k is the number of triangles,
[is the number of 4-cycles). Apparently, if we would consider instead of any pair
of nodes, only the support of the graph, i.e. edges e with w, # 0, the matrix-
variable and the number of constraints would be of reasonable size, even if the
graph consists of a few hundred vertices.

4.4.1 Exploiting Sparsity

The idea is to formulate an SDP considering not the complete graph, but indexing
the matrix variable only with those pairs of vertices, that are linked by an edge
with non-zero weight, i.e. the edges in the set E(G). Let y be a vector, indexed
by the edge set and zero, defined by

yo = 1
Yugy = wivs, [iJ] € B(G)i<y

44 CHAPTER 4. SDP RELAXATIONS OF THE MAX-CUT PROBLEM

Thus,
1
V1V9
y=1| | |, ye{x1}™"
ViVj
and yy? yields the matrix:
Yoo | Yo, (k1)
Y=yy" =

Yiigno Yigne

If this matrix corresponds to a cut, the following equalities must hold:

}/{i,k},{k,j} = }/0,{1',]'} A4 triangles (i,j, k) G (4.15)
Y{i,j},{k,l} = Y{i,l},{j,k} V4-— cycles (i,j, k, l) c G (416)
YiniGr = Yin.en V 4 — cycles (3,4, k,1) if [ik] ¢ E(G) (4.17)

Equalities (4.15) and (4.16) have already been proved in Section 4.3.1 to be
valid for matrices Y arising from a valid cut vector v. Condition (4.17) can be
justified as follows. If [ik] € E(G) then we would have the triangle-constraints:
Yigney = Yoqury and Yy = Yok thus Yig) ey = Y,y Since
this edge, and therefore the constraints do not exist, we can add this condition
Yiisntm = Y-

Let matrix Qr € Spy1, m = |E(G)|, be defined as

1 n
(Qr)gg = 1 Zln’
i=1
1 ..
(@)ogisy = Qlsye = Zhs VIl € E(G),
where L = (l;;) is the Laplace matrix of the graph. Hence,

Sl [l Ligs,
l l'il_’il 0 0
4 lizjz 0 0

QL=

Note, that if Y represents a cut 6(S), then

~ [-1 if[ij] € 8(S)
Yo,05y = Yiispo = { 1 otherwise.

4.4. BETWEEN THE BASIC RELAXATION AND A FIRST LIFTING 45

With @ defined in this way and if Y represents cut §(S), (Qr,Y) yields the
value of this cut:

(@QnY) = Yop(Quoo+2 D Youin(Qrlogsy =

[ij]€E(G)
1 n
= Z(Zliﬁ‘? Y. Youaly) =
=1 lisleB(G)
1
= 21—(2 Z (Zij-f-
lis]eE(G)
2) () +2 Y (1) (~ay) =
[i7]¢6(S) [i]€s(S)
= w(8(9)).

Thus, the following SDP relaxation can be obtained:

(MCSPARSE) max (Q,Y)
s.t. diag(Y)=e
AY)=b
YeSn, Y0

(4.18)

where m = |E(G)| and A(Y) = b denotes the set of triangle- and possibly the
4-cycle-equalities.

For any graph that contains a star (i.e. a vertex that is adjacent to each other
vertex), relaxation (MCSPARSE) has the important property, that the bound
is at least as good as the bound obtained by solving the basic SDP relaxation.
We prove this in the following

Theorem 4.3 Suppose there exists a vertex v € V(G) with deg(v) = n — 1.
Then the upper bound obtained from (MCSPARSE) is at least as good as the
(MCSDP)-bound.

Proof: Let Y be the optimal solution of relaxation (MCSPARSE) and v €
V(G) : deg(v) = n — 1. Define X € S,, X = (z;;) to be the matrix

Y{i,'u},{j,'u} le # 'U,j # v
Ty = Y{i,v},0 lf] = 'U$’i 75] y
You ifi=j=uv

for all 4,5 € V(G). le. X is the principal submatrix of Y consisting of the
rows/columns indexed by {{1,v},{2,v},...,{v=1,v},0,{v,v+1},...,{v,n}}.
Since Y is a solution of (MCSPARSE), diag(Y') = e and hence, diag(X) = e.
And because of the positive semidefiniteness of Y, X is a positive semidefinite
matrix (due to Theorem A.1 and the fact that X is a principal submatrix of Y).

46 CHAPTER 4. SDP RELAXATIONS OF THE MAX-CUT PROBLEM

Also, 3(L,X) = (Qr,Y). Thus, X is feasible for (MCSDP) and the optimal
solution of (MCSDP) is at least (Q,Y). O

This observation motivates us to add zero-cost edges to the given graph, in
order to obtain at least one star (if the graph does not already contain one).

When considering complete graphs, the relaxation considering the triangle-
equalities complies with the relaxation introduced by Anjos and Wolkowicz. But
if the graph is sparse, the matrix variable is of order m+1 in comparison to (g) +1
and we have 1 + m + 3k linear equalities, where k is the number of triangles.

Also, considering all three types of constraints is a weaker model than the one
proposed by Lasserre, but contrary to the Lasserre relaxation it is manageable
for graphs on a few hundred vertices.

Solving this relaxation is discussed in Chapter 5 below.

4.4.2 Systematically Chosen Submatrices

Gvozdenovi¢ and Laurent [44] constructed a hierarchy of semidefinite approxi-
mations for the chromatic number x(G) of a graph G (see Section 2.2). Similar
to the hierarchy of, for instance, Lasserre, also their second order bound ¥/®(G)
is not practically computable, since the dimension of the SDP is too large. Nev-
ertheless, they present computational results, where they use a variation of their
second order bound ¥®(G). Instead of working with the matrix that is in-
dexed by {0} U V(K,) U E(K,), n = |[V(G)|, they consider only the index set
{0YUV(K,)U{{h,i}: i € V(K,)}, h € V(K,) and thus have a computationally
practicable strengthening of ¥((G).

Using this idea, we can get tractable relaxations also for the Max-Cut problem.
Consider the relaxation of Anjos and Wolkowicz or Lasserre, but instead of using
the full matrix of dimension (}) + 1, we work with the matrix considering the
index set

@ U} 5 € VIO

v; € V(G) Vi € {1,...,k}. That means, we choose an integer k, 1 < k < n,
and include edges, such that the graph consists of k£ stars. The dimension of this
matrixis(n—=1)+(n—2)+---+(n—k)+1=kn—k(k+1)/2+ 1.

It is easy to see, that as coefficient matrix in the objective function one can
choose a matrix having the Laplace matrix of the underlying graph as a principal
submatrix, namely in the rows/columns associated to one of the vertices with
degree n — 1 and the @-row/column.

Due to Theorem 4.3, this bound is then at least as good as the basic relaxation
(MCSDP), already for k = 1. Of course, the choice of k affects the quality of
the bound, but also the computational effort. Therefore, choosing the ‘right’ k
might be a crucial task.

4.4. BETWEEN THE BASIC RELAXATION AND A FIRST LIFTING 47

(MCSPARSE) with constraints

(4.15), best

(4.1) | (4.15) (4.15),(4.16) (4.15),(4.17) (4.16),(4.17) | cut

trid020 109.3 | 106.9 106.4 106.3 106.1 | 106
tri50-20 170.6 | 167.7 166.4 165.5 164.8 | 164
tri_rnd40-20 | 304.8 | 289.9 286.0 286.0 286.0 | 286
tri_rnd50.20 | 339.5 | 312.8 305.0 305.0 305.0 | 303
grid 10, 10 | 142.0 | 135.2 133.0 133.5 132.0 | 152
grid 15, 15 | 318.7 | 303.8 299.1 299.7 297.0 | 297
grid 20, 20 | 574.0 | 546.1 540.1 541.1 539.0 | 5589
grid 4, 4, 4 | 105.0 | 1004 98.3 98.8 96.1| 9
grid 6, 6,4 | 233.2 | 225.2 221.3 222.1 216.0 | 216
grid 8, 8,4 | 422.6 | 407.2 401.5 402.6 388.0 | 388
grid 8, 8,5 | 520.9 | 503.8 497.8 498.5 479.2 | 479
spind 125.3 | 124.2 123.8 123.7 110.8 | 108
spin6 211.8 | 210.2 220.0 2104 188.7 | 182
gls 1446 | 141.6 152.5 140.0 135.1 | 126

Table 4.3: Comparing bounds for (MC) obtained by solving (MCSDP), (4.1),
and (MCSPARSE), including different types of constraints. Bold numbers in-
dicate, that we have proved optimality of the best found cut. (Note that the
weights on the edges of all graphs are integers.)

4.4.3 Numerical Results of (MCSPARSE)

In this section we present a few numerical results of solving relaxation (MCSPARSE)
and compare it with the solution of (MCSDP).

Table 4.3 lists the various bounds. The SDPs have been solved using SeDuMi
[122] or the Bundle Method (Section 5.1.1), depending on the size of the problem.

In the first column, the bound obtained by solving the basic relaxation (MCSDP)
is given. The second column shows the bound when solving the sparse model and
considering all the triangle-equalities. In column 3, additionally the 4-cycle con-
straints are included. Column 4 shows the results where the triangles and also
the constraints referring to (4.17) are incorporated. And in the fifth column all
constraints are taken into consideration. In the last column the best found cut is
given.

As can be seen, even with the smallest set of constraints, the sparse model
is always significantly better than the (MCSDP)-bound. Additional constraints
improved the bound and considering all equations proved that the best cut found
was optimal for most of the instances.

We annotate that using SeDuMi we compute the exact solution of the SDP,
whereas the Bundle Method returns an upper bound. For the spin6 and gls

48 CHAPTER 4. SDP RELAXATIONS OF THE MAX-CUT PROBLEM

graphs, the relaxation with constraints (4.15),(4.16) (which is intractable to be
solved by SeDuMi) was hard to solve for the Bundle Method. The progress was
not satisfactory and therefore we end up with a bound that is rather far from the
optimum of the SDP. Nevertheless, the Bundle Method for solving the relaxation
using constraints (4.15),(4.16),(4.17) shows a more satisfying behavior and the
bounds for graphs spin6 and gls are improved significantly.

Chapter 5

Algorithms for Solving
Large-Scale Semidefinite
Programs

In previous chapters we investigated various Semidefinite Programs for solving or
approximating NP-hard problems arising from Combinatorial Optimization. This
chapter is dedicated to methods for solving these SDPs. T'wo prominent solution
methods have already been investigated in Chapter 1, namely the Interior-Point
Method and the Spectral Bundle Method. Although these two methods are
widely used, for various kinds of relaxations the dimension of the matrix variable
or the number of constraints is simply too large to be solved by one of these
algorithms.

This means that for various NP-hard problems promising Semidefinite Pro-
gramming relaxations exist, but due to the vast computational effort or the huge
memory requirements, the SDPs are not solvable.

Another way to tackle the problems of solving these SDPs, is using Lagrangian
duality and then solving the underlying problem by Bundle Methods, a tool for
optimizing non-differentiable functions (see Schramm and Zowe [118], Kiwiel [70],
Lemarechal [82]). We will focus on these methods in this chapter and will elab-
orate the details for solving the relaxations introduced in the previous chapter.
Furthermore, we will come back to the Spectral Bundle Method, introduced in
Section 1.4.2 and establish second order models to improve the performance.
Finally, the Boundary Point Method is introduced in this chapter. This new
algorithm uses an augmented Lagrangian algorithm applied to the dual SDP. At
the end of the chapter, a brief guidance for choosing the proper algorithm to solve
a given SDP is presented.

49

50 CHAPTER 5. ALGORITHMS FOR SOLVING LARGE-SCALE SDPS

5.1 The Bundle Method in Combinatorial Op-
timization

Barahona and Anbil [11] and Barahona and Ladédnyi [12] use the volume algorithm
for solving LP relaxations arising from combinatorial optimization problems. This
algorithm allows solving LPs with a large number of constraints, because they
are not handled directly, but are incorporated by using the Lagrangian dual.
Bahiense, Maculan, and Sagastizabal [7]) show that this algorithm can be viewed
as a simple variant of the Bundle Method.

Bundle Methods were first proposed by Lemarechal [82], and later on further
investigated by Kiwiel [69], Lemaréchal, Nemirovskii, and Nesterov [83]. A recent
survey can be found in the paper of Mékeld [91]. A detailed presentation can be
found in the textbook of Hiriart-Urruty and Lemaréchal [60].

We want to apply this method to solve semidefinite programs with a large
number of constraints, for example those introduced in Sections 4.2 and 4.4.

The ingredients of the Bundle Method are basically the following:

e For a convex objective function f and a point ¥ € R™ we are able to
compute

— the objective value f(¥)
— a subgradient g € 9f(%), i.e. g satisfying

fNZ @)+ @ v—9), Vv eR™

e This information is used to construct a cutting plane model f of f, mi-
norizing f on R™:

Fe(v) = max f(%) + (g:,7 — %)-

1<i<k

e Since the quality of minorant f is reasonable only in the vicinity of the
current iterate, displacement is penalized by considering

N Uu .
Fe(v) = filn) + gl = Fell’,
where u € R is the penalty parameter.

The bundle (of size k) can be seen as the set of triples

{7 €eR™, fi:=f(%),9: €0f(m), i=1,...,k}.

We sketch the generic framework as follows.

5.1. THE BUNDLE METHOD IN COMBINATORIAL OPTIMIZATION 51

Algorithm 5.1 (Generic Bundle Algorithm)
Input.
Function f and ¥ € R™.
Start.
Fualuate f(%) and obtain subgradient g.
Construct cutting plane model f of f, minorizing f on R™.
while some stopping condition is not satisfied
Solve min,, f(v) + %[y — F|* to get Viest-
Euvaluate f at yiest and obtain subgradient gieq-
if reasonable progress is made
Do a serious step,
update bundle, giving updated f .
else
Do a null step,
update bundle, giving updated f .
Check stopping condition.
end

In the two subsequent sections we want to elaborate the details for applying the
Bundle Method to solve SDP relaxations of the Max-Cut problem.

5.1.1 Solving (MCSPARSE) Using the Bundle Method
We want to solve the Max-Cut relaxation introduced in Section 4.4, namely

(MCSPARSE) max (Qp,Y)
st. diag(Y)=e
AY)=b
Ye Sm+l, Y =0

where m = |E(G)| and A(Y) = b denotes the set of triangle- and possibly the
4-cycle-equalities. Let | be the number of these constraints, i.e. b € R..

Recall that the set of positive semidefinite matrices with an all-ones diagonal
is the elliptope, denoted by £. Thus, (5.1) can equivalently be written as

(MCSPARSE) max (Q.,Y)
st. AY)=b (5.2)
Y ek

The goal is to optimize the dual functional to (MCSPARSE). Let us introduce
the Lagrangian

(5.1)

LY, 7) = (QL,Y) +7 (b - A(Y)) (5.3)
and the dual functional

f(7) = max L(Y,7) = by + max (Qr — A™(7),Y). (5:4)

52 CHAPTER 5. ALGORITHMS FOR SOLVING LARGE-SCALE SDPS

Evaluating f for some -y amounts to solving a problem of type (4.1), which can
be done easily for problem sizes of our interest by Interior-Point Methods (see
Section 1.4.1).

We call a pair (7, Y) a matching pair for f, if f(y) = L(Y,~). A subgradient
is given by g(v) = b—A(Y’). By applying Corollary A.12 we obtain the Lagrangian
dual

max min £(Y,7) = minax £(Y,7) = min £(7).

Following the ideas of the bundle concept, we build up a bundle of matrices

to construct the minorant

fappr () := max{L(Y,7) : Y € conv(Yy,...,Ys)}.

Obviously, Y € conv(Yi,...,Ys) can be expressed as Y = \Y; + - + A\ Ys,
eTA=1,1>0.
In each iteration we have some current iterate 4 and we have to solve

. 1 .
min foppr () + '2“”'7 - ’7“2, (5.5)
Y t
which is convex quadratic in 7, and then we find Y (i.e. solving an SDP of

dimension n with n linear constraints), such that (v,Y) is a matching pair.

Some notation. Let us collect Y, ..., Y, symbolically in Y and for a vector
A € R* define YA := S°F | \,Y;. Furthermore we define A := {\ € R*: eT\ =
1, A > 0}. G € R™¥ is the collection of the k subgradients, i.e. G := (g1, - -, gk)
and F € R* is the vector of the primal function values of the matrices in Y, i.e.
F‘,' = (QL,Y», 1 S) S k.

With this notation we rewrite

fappr (¥) = maxbTy+(Qr — A™(7), YX) =
= max (b — A(YA),7) +(Qr, VA) =
= max yTGX + FT .
Therefore, (5.5), the problem to be solved, reads

1
. T T 2112 —
minmaxy GA+ F' A+ =lly—4I° =
71 AeA 2t“ I

1
= in~y? T+ —|lv — 4|2 5.6
If\lgxcm;nv G\+F)\+2t||7 ol (5.6)

The inner problem in (5.6) is an unconstrained convex quadratic problem in 7y
and therefore we can replace the minimization by insuring (;9—7 =0
3(7TGA+FTA+lu»y—fy||2)=o & GA+1(7—&)=0
0y 2t t
& y=5—-tGA (5.7)

5.1. THE BUNDLE METHOD IN COMBINATORIAL OPTIMIZATION 53

Substituting (5.7) in (5.6) we obtain
1

T T My — A2 =
maxy GA+ F'A + —|ly = 4|
1
_ : T T A — A 2:
= max(y tGATGA+ F /\+2t||’7 tGA — 4|

t
— ~T vy _ 2 T t 2 _
= max? GA=t|GA\|*+ F' X + 2HG)\”
t
- Tz Ty T 2
= I/I\lgx((G F+ F)" A 2||G)\|| : (5.8)

This convex quadratic problem over A can be solved efficiently by an Interior-
Point Method.
We can summarize now the algorithm to solve problem (5.1).

Algorithm 5.2 (Bundle Method to solve (MCSPARSE))
Input.

QL,A,b defining the problem.

Starting point 4 € R™ (optional).

Parameter t, a, €.
Start.

i=1, done=false.

FEvaluate f at 4:

solve max (Qr — AT(%),Y

) s.t.Y €& gwing Y,
F3) = "9 +(Qr — AT(),

A)'
(

subgradient G = g(3) = b — A(Y).
repeat
Solve (5.8) and obtain .
Viest = ¥ — tGA.

Jappr (Veest) = (F + G Ygeat) T A
ifi< itermaz and f(’?) - fappr(’)'test) > €
Evaluate f at viest:
solve max (Q — AT(7),Y) s.t. Y € £ giving Vies,
ftest = bT'Ytest + <QL - -AT(’Ytest)a }/test);
subgradient giest = b — A(Yiest)-
if ftest S afappr(’)’test) + (1 - a)f('?)
Serious step:
5’ = Ytest-
Increase t.
else
Null step:
Decrease t.
Purge bundle (x).
Append Yiest to Y, Jtest O G; <QLaYtest> to F.

54 CHAPTER 5. ALGORITHMS FOR SOLVING LARGE-SCALE SDPS

i=1+1.
else
done=true.
until done.

ad (x): In order to keep the size of the bundle reasonably small, we purge it in
each iteration, meaning that we eliminate points Y; from) (and corresponding F;
and the ¢-th column of G) whose contribution to the minorant fop,- is negligibly
small (i.e. \; < p- maxi<j<k Aj, for small p > 0).

Computational effort. Solving problem (5.8) can be done efficiently and also
the matrix and vector manipulations are of minor computational effort. The
most expensive task during one iteration is the function evaluation, i.e. solving
an SDP of dimension m with the m equality constraints fixing the main diagonal
to all ones. This SDP has to be solved exactly once in each iteration. Therefore,
one has to limit the number of iterations in order to get reasonable computation
times.

Quality of the solution obtained by the Bundle Method. Since the Bun-
dle Method returns only a “nearly” optimal solution, we want to evaluate the
quality of this solution. We run the following experiment. Instances, which are
solvable by Interior-Point Methods, as well as by the Bundle Method, are cho-
sen and solved using SeDuMi (Sturm [122]) and using our Bundle code, fixing
the number of iterations to 100. (In detail, we set the parameters as follows:
e =108, a = 0.2, estimate for t: t = 2(f(Vstart) — best)/(GTG), where best is
some best known lower bound; if serious step: ¢ = 1.01¢, if null step: ¢ = ¢/1.02.)
We summarize the results in Table 5.1. It turns out, that the bundle solution is
always less than 1% above the solution of the Interior-Point Method and therefore
it is definitely arguable to talk about a “nearly” optimal solution.

5.1.2 Solving (SDPMET) Using the Bundle Method

Fischer, Gruber, Rendl, and Sotirov [35] developed a dynamic version of the
Bundle Method to solve problem

(SDPMET) max (L,X)
st. AX)<b (5.9)
X €€,

where A(X) < b denotes the set of triangle inequalities (see Section 4.2).
Contrary to solving (MCSPARSE), explained in Section 5.1.1, we have to
deal with inequalities, instead of equalities, which requires further examination.

5.1. THE BUNDLE METHOD IN COMBINATORIAL OPTIMIZATION 55

number of | solution obtained by

|E| constraints | SeDuMi bundle | 100%%-SeDuli
rnd40._1 412 5102 | 241.8254 242.6178 0.33
rnd40.2 411 4933 | 247.0309 247.2647 0.09
rnd40_3 413 5136 | 243.7674 244.2194 0.19
grid2D_1 437 1152 | 123.5164 124.3625 0.69
grid2D_2 595 1784 | 170.7619 171.2725 0.30
grid2D_3 595 1784 | 151.0140 151.6911 0.45
planar_1 581 3708 | 356.6162 357.1655 0.15
planar_2 581 3708 | 112.4779 113.3540 0.78
rnd400_1 1193 3594 | 720.7212 721.4541 0.10
rnd400_2 1188 3583 | 719.1141 719.7037 0.08
planar_3 609 4156 | 364.5891 365.5026 0.25
planar 4 605 4125 | 362.9813 363.6936 0.20
planar_5 602 3954 | 361.0765 361.7070 0.17
spin2pm_1 | 446 1188 | 134.6885 135.3837 0.52
spin2pm_2 | 595 1784 | 148.7254 148.9564 0.16
spin2pm_3 | 595 1784 | 155.3412 155.8469 0.33
spindpm_1 | 655 2024 | 195.0179 195.4285 0.21
spin3pm_2 | 793 2576 | 197.9891 198.2795 0.15
spin3pm_3 | 793 2576 | 198.8500 199.1416 0.15
spin6 216 2784 | 210.7897 211.1507 0.17

Table 5.1: Solution of the IPM vs. Bundle Method. The dimension of the matrix
variable is |E| + 1, the number of constraints is given in column three. Columns
four and five give the solutions obtained by the two methods. The last column
indicates how far the bundle-solution is from the optimal solution (in %).

56 CHAPTER 5. ALGORITHMS FOR SOLVING LARGE-SCALE SDPS
We now have to solve the Lagrangian dual

min f(7),
with f defined in (5.4). Dualizing also the con