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Abstract

Combinatorial Optimization and Semidefinite Programming are two research top-
ics that have attracted the attention of many mathematicians and computer sci-
entists during the past two decades. Remarkable results have been achieved in
both fields. This thesis is a further component in exploring the field of Semidefi-
nite Programming and investigating Combinatorial Optimization problems.

Due to the various areas of application, one research topic of high interest
is the development of algorithms for solving Semidefinite Programs. Although
reliable methods are already available and widely used these algorithms are often
inapplicable for large-scale programs, due to the huge memory requirements or
the vast computational effort. The present work proposes methods (and imple-
mentations) that are capable of solving Semidefinite Programs of high dimensions
and/or a large number of constraints. These methods are: the Bundle Method
applied to solve Semidefinite Programs, the Spectral Bundle Method with second
order information, and the Boundary Point Method.

Exploiting the concept of Bundle Methods allows solving problems, even if
the number of .constraints is rather large. By the use of Lagrange multipliers, the
constraints (or some of them) are lifted into the objective function and the dual
problem is then solved following the concept of Bundle Methods.

In the Spectral Bundle Method the largest Eigenvalue Àmax of a matrix is
minimized. Since the second-order behavior of the Àmax function is well studied,
it can be incorporated in this method. Making partial use of this second-order
information improves the efficiencyof the Spectral Bundle Method while keeping
it computationally practical.

Another new algorithm for solving Semidefinite Programs is the Boundary
Point Method. This is an augmented Lagrangian algorithm applied to solve
Semidefinite Programs. For various problem classes this method is by far superior
to other available algorithms.

Regarding applications, the main focus of this study is on the Max-Cut prob-
lem, one of the most challenging Combinatorial Optimization problems. The
applicability of this problem is even broader than obvious at first sight, since any
unconstrained quadratic (0-1) problem can be transformed to a Max-Cut prob-
lem. Apart from recalling the properties of the problem and giving a survey of
relaxations and known solution methods, new relaxations based on Semidefinite
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Programming are introduced. Finally, "Biq Mac" was developed, a solver for
binary quadratic and Max-Cut problems. Biq Mac is an implementation of an
exact solution method using a Branch & Bound algorithm with a bounding rou-
tine based on Semidefinite Programming. Detailed information on this algorithm,
as well as a collection of test problems together with numerical results, can be
found in the present thesis. Various test problems that have been considered in
the literature for years, were solved by Biq Mac for the first time. This affirms
the success of using Semidefinite Programming for Combinatorial Optimization
problems.
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Notation

This is a short description of the symbols used throughout this thesis. Also the
names of the various (semidefinite) programs are given, including the numbers of
the sections where they appear for the first time.

]Rn

Sn
S+n
s++n

S;;
S;;-
>-
mm

max
in!

space of real n-dimensional vectors
space of n x n symmetric matrices
space of n x n positive semidefinite matrices
space of n x n positive definite matrices
space of n x n negative semidefinite matrices
space of n x n negative definite matrices
Löwner partial order
minimum, minimize
maximum, maximize
infimum

sup supremum
\7 nabla operator
a~J(Xl' ... 1 xn) partial derivative
A( .) linear operator
AT (.) adjoint of the linear operator A( .)
trA trace of matrix A
(A,B)
I

e

Àmin(A)
Àmax(A)
diag(A)

(A, B) := tr(AT B)
identity matrix of appropriate dimension
identity matrix of dimension n
matrix of all ones
vector of all ones of appropriate dimension
vector of all ones of dimension n
minimum eigenvalue of the symmetric matrix A
maximum eigenvalue of the symmetric matrix A
vector formed by the main diagonal of matrix A

IX
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Diag( v) diagonal matrix with main diagonal v
G = (V(G), E(G)) graph G with vertex set V(G) and edge set E(G)
'/, r-v J vertices i and j are in the same partition block
i rf j vertices i and j are in opposite partition blocks
a( G) stability number of graph G
w( G) clique number of graph G
x( G) chromatic number of graph G
'l9( G) 'l9-number of graph G
(PSDP) primal Semidefinite Program in standard form, 1.1
(DSDP) dual Semidefinite Program in standard form, 1.1
(EVP) Eigenvalue Optimization Problem, 1.1
(MC) Max-Cut problem, 2.1
(QP) unconstrained quadratic (0 -1) problem, 3.2
(THETA) SDP for computing the 'l9-number, 2.2
(DTHETA) and its dual, 2.2
(GP) graph partitioning problem, 2.3
(MCSDP) basic SDP relaxation of (MC), 3.3.2
(MCDSDP) and its dual, 3.3.2
(MCEIG) basic SDP relaxation of (MC) as eigenvalue optimization prob-

lem,3.3.2
(SDPMET) SDP relaxation of(MC) strengthened by the triangle inequlities,

4.2
(SDP3) lifting of Anjos and Wolkowicz, 4.3.1
(SDP3p) projected lifting of Anjos and Wolkowicz, 4.3.1
(MCSPARSE) SDP relaxation of (MC) designed for sparse graphs, 4.4



Introduction

This thesis is basically concerned with two topics:

• The Max-Cut problem: introducing new relaxations based on Semidefinite
Programming to obtain tight upper bounds and developing an exact solu-
tion method.

• Methods for solving large-scale Semidefinite Programs.

In order to make this thesis self-contained, we explain in Chapter 1 the basics
about Semidefinite Programming and sketch the two most popular methods for
solving Semidefinite Programs, namely Interior-Point methods and the Spectral
Bundle Method. In Chapter 2 an introduction to Combinatorial Optimization
and some of the problems arising in this field are given.

One of these problems arising from Combinatorial Optimization is the Max-
Cut problem. We concentrate in this thesis on this NP-complete problem and
therefore, Chapter 3 gives a more detailed description and explains methods for
finding upper bounds or solving it. Furthermore it is shown in this chapter that
solving Max-Cut problems and solving unconstrained quadratic (0-1) problems
is essentially the same. Therefore and since many real-world problems can be
formulated as unconstrained quadratic (0-1) problems, it is even more striking
to have an algorithm that solves Max-Cut problems efficiently.

Chapter 4 is concerned with the Max-Cut problem as well. Within this chap-
ter we take a closer look on relaxations based on Semidefinite Programming.
Apart from those relaxations that work with matrix variables indexed by the
vertex-set of the underlying graph, we also consider methods that apply a lift-
and-project strategy. The latter relaxations, although being of highly theoret-
ical interest, are practically not computable, already for medium-sized graphs.
We introduce a new relaxation, that can be viewed as 'lying between' the basic
semidefinite-programming relaxation and a first lifting, and that is solvable also
for graphs on a few hundred nodes.

Having various Semidefinite Programming formulations that can provide bounds
for NP-hard problems leads naturally to the demand of algorithms for solving
these Semidefinite Programs. This issue is addressed in Chapter 5. We sketch
there the concept of Bundle Methods and apply this concept to solving Semidef-
inite Programs, in particular we design the algorithm for solving two of the re-
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laxations introduced in Chapter 4. Furthermore, we come back to the Spectral
Bundle Method, which we equip with a second order model. And as a further
algorithm, the Boundary Point Method is introduced within this chapter. This
new method elaborates the idea of using the augmented Lagrangian algorithm
for solving Semidefinite Programs.

The final chapter of this thesis, Chapter 6, provides an exact solution method
for Max-Cut problems. The Biq Mac solver for solving Binary Quadratic and
Max- Cut problems is explained. Apart from the ingredients of this solver, Le.
a Branch & Bound framework, branching rules, implementation issues, etc., also
a wide variety of test problems are collected and detailed numerical results are
given.

Summarizing, this thesis provides the following new studies:

• A relaxation for sparse Max-Cut problems based on Semidefinite Program-
ming (Section 4.4) and implementation of the Bundle Method to solve this
relaxation (Section 5.1.1). This ongoing research can partly be found in
[113] .

• Exploiting second order information in the spectral bundle method (Sec-
tion 5.2). See also the working paper [4].

• A boundary point method for solving Semidefinite Programs (Section 5.3).
This work has been published in [110].

• Developing and implementing Biq Mac, an exact solution algorithm for
solving Max-Cut and unconstrained (0-1) problems. Furthermore, a collec-
tion of test problems has been built up and numerical results are presented
(Chapter 6). A technical report [115]is available.



Chapter 1

Semidefinite Programming

Many real-world applications, although being non-linear, can be well described by
linearized models. Therefore, Linear Programming (LP) became a widely studied
and applied technique in many areas of science, industry and economy.

Semidefinite Programming (SDP) is an extension of LP. A matrix-variable
is optimized over the intersection of the cone of positive-semidefinite matrices
with an affine space. It turned out, that SDP can provide significantly stronger
practical results than LP. The study of SDP goes back to the sixties, when Bell-
man and Fan [19]derived theoretical properties of Semidefinite Programs. A first
application appeared in the work of Lovasz [88]. Since then SDP turned out to
be practical in a lot of different areas, like combinatorial optimization, control
theory, and more recently in polynomial optimization.

Due to the numerous areas of applications, also solving SDPs became a widely
studied subject. Interior-Point Methods are the most popular algorithms nowa-
days. Recently the concept of Bundle Methods also has been applied for solving
Semidefinite Programs.

In this chapter we formulate the Semidefinite Programming problem including
duality theory. A subsection is dedicated to a related problem, namely Eigen-
value Optimization. Finally, Interior-Point Algorithms and the Spectral Bundle
Method, two algorithms for solving Semidefinite Programs are explained.

Most of the proofs of Theorems and Lemmas in this section are omitted,
because they appear in a wide variety of text-books or survey papers. For surveys
on SDP the reader is referred to e.g. Helmberg [52],Vandenberghe and Boyd [126],
Laurent and Rendl [80]. More references are given in the subsequent sections.

3



4 CHAPTER 1. SEMIDEFINITE PROGRAMMING

1.1 The Semidefinite Programming Problem

A Semidefinite Program in its standard notation is given as follows. Let C and
Al, ... , Am be matrices in Sn and b E ]Rm, we obtain

(PSDP) max (C,X)
s.t. A(X) = b

X E Sn, X t: 0

where A: Sn -+ ]Rm denotes a linear operator defined as

The adjoint operator AT: ]Rm -+ Sn, is defined through the equation

(A(X), y) = (X, AT(y)), for all X E Sn, Y E ]Rm. (1.1)

Therefore,
m m m

(A(X), y) = LYi(Aï, X) = L(YiAi,X) = (LYiAï, X) = (AT(y), X)

and hence,

i=l i=l

m

AT(y) = LYiAï.
i=l

i=l

In order to derive the dual to (PSDP), we introduce y E ]Rm to be the Lagrangian
multiplier for the equations in (PSDP). Then the following always hold:

max{ (C, X): A(X) = b, XES:} max min (C, X) - (A(X) - b, y)
XES;; yElRm

< min max (b, y) - (AT(y) - C, X)
yElRm XES;

min{ (b, y): AT(y) - CES:, Y E ]Rm}.

The first equation is true, because if A(X) = b is not fulfilled, the minimization
yields -00 and conversely, if the equation is satisfied, (C, X) is the result, i.e.

min (C X) _ (A(X) _ b ) = {(C,X) for A(~) = b
yElRm ' , Y -00 otherwlse. (1.2)

The inequality arises because of Lemma A.11 and for the last equation similar
ideas as for the first hold, namely

max (b ) _ (AT( ) _ C X) = { (b, y) for AT~y) - C E s;t (1.3)
XES; , Y y, 00 otherwlse.



1.2. DUALITY THEORY

Therefore, the dual to (PSDP) can be stated as

(DSDP) mm (b, y)
s.t. AT(y) - C = Z

Y E IRm
, Z E Sn, Z ~ o.

5

For referring to points satisfying the constraints in (PSDP) or (DSDP),
respectively, the following definitions will be useful:

Definition 1.1 (feasibility)
Matrix XES; is feasible Jar (PSDP) iJ A(X) = b holds.
The pair (y, Z) E IRmx S; is feasible Jar (DSDP) iJ AT(y) - C = Z.

Definition 1.2 (strict feasibility)
Matrix X E S;+ is strictly feasible Jar (PSDP) iJ A(X) = b holds.
The pair (y, Z) E IRmx S;+ is strictly feasible Jar (DSDP) iJ AT(y) - C = Z.

1.2 Duality Theory

In Section 1.1 we introduced the primal and dual formulation of an SDP in stan-
dard form by using Lagrangian multipliers. Let X be a primal feasible solution
and (y, Z) a dual feasible solution, then the difference between the objective
values of the primal and dual feasible solution is defined as duality gap.

Definition 1.3 (duality gap) Let XES; and (y, Z) E (IRm x S;), X being
Jeasible Jar (PSDP) and (y, Z) being Jeasible Jar (DSDP). The duality gap at
(X, y, Z) is given by

(b, y) - (C, X).

Due to Lemma AA, the duality gap is always non-negative:

(b,y) - (C,X) = (A(X),y) - (AT(y) - Z,X) = (Z,X) ~ O. (lA)

This fact is called weak duality and we formulate it as the following

Lemma 1.4 (weak duality) LetX ES;, y E IRmwithA(X) = b andAT(y)-
CES;. Then

(C,X)::; (b,y).

If X, yare feasible and the duality gap is zero, then strong duality holds and we
have a proof, that these are the optimal solutions for (PSDP) and (DSDP),
respectively. On the other hand, strong duality does not necessarily hold for
SDPs, as Vandenberghe and Boyd [126] exemplify:
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Example 1.5 Consider the following SDP

max

s.t. ~ ) tO.
1+ XI2

For deriving the dual to this SDP, let us rewrite it so that the matrices defining
the operator A become more evident:

max

s.t.

The dual to this problem reads

XI2

(( ~l

(

1 0
( 0 0

o 0

(

0 0
( 0 0

1 0

(

0 0
( 0 0

o 1

_1 0)
0

2
0 ,X)=1

o 1

n,X) = 0

n,X) = 0

n,X) =0.

z.e.

mm

s.t. l=lll)2 Y3
o Y4 tO.

Y4 YI

Because of Observation A.5, X12 has to be equal to zero and therefore, the optimal
objective value of (PSDP) is zero. In the dual, I-t has to be equal to zero, thus
the optimal value is 1 and we have a duality gap of 1 for any primal and dual
feasible solution.

Hence, contrary to linear programming, it is no longer true that the duality
gap has to be zero at the optimum.

One certificate that identifies problems with zero duality gap at the optimal
solution is the Slater constraint qualification, defined as follows.
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Definition 1.6 (Slater constraint qualification)
(PSDP) satisfies the Slater condition if there exists X E S:+ with A(X) = b.
(DSDP) satisfies the Slater condition if there exists a pair (y, Z) with Z E S:+
and AT(y) - Z = C.

We can provide the following

Theorem 1.7 Denote

p* = sup{ (C, X): A(X) = b,X E s;t}

and
d* = inf{ (b, y): AT(y) - CE s;t} .

• If (PSDP) satisfies the Slater condition with p* finite, then p* = d* and
this value is attained for (DSDP) .

• If (DSDP) satisfies the Slater condition with d* finite, then p* = d* is
attained for (PSDP) .

• If (PSDP) and (DSDP) both satisfy the Slater condition, then p* = d* is
attained for both problems.

A proof can be found for instance in Duffin [34], Nesterov and Nemirovskii [98]
or Rockafellar [117]. Obviously, these conditions do not hold for Example 1.5.

As an example for an SDP where the primal optimal solution is not attained,
we cite Helmberg [52]:

Example 1.8 Consider the following Semidefinite Program and its dual:

max -Xll

S. t. (X;1 1 ) ta.
X22

mm 2Yl

s.t. (:1 ~) ta.

Due to Observation A. 5, YI has to be equal to zero to guarantee dual feasibility
and thus, the optimal dual solution value is zero.
The primal problem has a strictly feasible solution (Xll = X22 = 2, for instance).
The fact, that X has to be positive semidefinite constrains the variables to Xll ~

0, X22 ~ a and XllX22 - 1 ~ O. Thus, we have Xll ~ X~2 with X22 non-negative.
With X22 -. 00 we get Xll = a and thus, the optimum is not attained for the
primal problem.
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We have seen in (lA) that a zero duality gap implies (Z,X) = 0 and hence,
ZX = 0 (due to Lemma AA). This motivates the following

Definition 1.9 (Complementary slackness) Matrices X E s;t and Z E s;t
are complementary if ZX = O.

For problems where strong duality holds, we therefore obtain the following nec-
essary and sufficient optimality conditions:

(OPT) A(X) = b, X E s;t (primal feasibility)
AT(y) - C = Z, Z E s;t, Y E IRm (dual feasibility)
ZX = 0 (complementary slackness)

These optimality conditions play an important role for the development of
interior-point algorithms for solving Semidefinite Programs and will appear again
in Section lA.l.

1.3 Eigenvalue Optimization
Many practical applications lead to problems of Eigenvalue Optimization, for a
survey the reader is referred to Lewis and Overton [85]. The simple observation

X E s;t {::}Àmin(X) ~ 0

(where Àmin(X) denotes the smallest eigenvalue of matrix X) indicates, that
Eigenvalue Optimization and Semidefinite Programming are tightly related.

Denote by Àmax(X) the maximum eigenvalue of matrix X. We consider the
following Eigenvalue Optimization problem

or equivalently

(EVP)

(EVP)

(1.5)

(1.6)

with a E IR and, as in the previous section, C E Sn, A: Sn -+ IRm and b E IRm.
To show the relation between (EVP) and Semidefinite Programming, consider

(PSDP) and (DSDP) defined in Section 1.1. We make the following assumption:

A(X) = b =? trX = a > 0, (1.7)

called the constant trace property. Adding this redundant constraint (I, X) = a
to (PSDP), results in the following dual (À is the Lagrangian multiplier to the
newly added constraint)

(DSDP') mm (b, y) + (a, À)
S.t. AT(y) + ÀI - C = Z

ZES;t.
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Assuming that strong duality holds for the underlying problem, we have

(Z, X) = 0, Z E S;;, XES;;

at the optimum and due to Lemma A.4 follows

ZX=o.

9

Therefore the optimal Z is singular (if Z would be non-singular, we obtain X = 0
which contradicts trX > 0) and all eigenvalues of -Z must be non-positive with
at least one eigenvalue equal to zero. Hence,

Àmax(-Z) = 0 {::} Àmax(C- AT(y) - ÀI) = 0
{::} Àmax(C- AT(y)) - À = 0
{::} À = Àmax(C- AT(y)).

Substituting for À in the objective function of (DSDP'), we obtain

which is (EVP).
For easier notation, define

(1.8)

to be the function to be minimized. (To simplify matters, we assume multiplier
a to be equal to one.) Due to the well-known fact

Àmax{X)= max{ (W, X): trW = 1, WES;;}

we can rewrite (1.8) as

f(y) - max{ (C - AT(y), W) + bTy: trW = 1, WES;;} =

max{ (C, W) + (b - A(W)f y: trW = 1, WES;;}.

(1.9)

Recall that function Àmax(.) is differentiable if and only if the maximal eigenvalue
has multiplicity one. Typically, the largest eigenvalue has multiplicity larger than
one for eigenvalue optimization problems and therefore one has to deal with the
sub-differential of Àmaxat X,

OÀmax(X) = {W ES;;: (W,X) = Àmax(X), trW = I}

(confer for instance Overton [100]). For function (1.8) we then get

of(y) = {b - A(W): (W, C - AT(y)) ,=Àmax(C- AT(y)), trW = 1, WES;;}
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(1.10)

by using standard rules (see Hiriart-Urruty and Lemaréchal [59]). Note that any
matrix W = vvT, with v E !Rn being an eigenvector to the maximal eigenvalue of
X, is contained in the subdifferential of Àmaxat X.

Let y be an optimal solution of (EVP). If >. = Àmax(C - AT(y)) has mul-
tiplicity k, then there exists an n x k matrix P with pT P = h and a matrix
U E Sk with trU = 1,Ut 0 satisfying ÀI t C-AT(y) and (C-AT(y))P = ÀP.
And since 0 E ôf(y) must hold, we have A(PU PT) = b.

Therefore, we can state the following optimality certificate. y is optimal for
(EVP) if and only if there exists P, U such that

pT(C - AT(y))p = Àh
ÀI t C - AT(y)
A(PUpT) = b
p E !Rnxk, pT p = h
U E Sk, trU = 1,Ut 0

Finally, wewant to mention that assumption (1.7) is valid for many relaxations
arising from problems in combinatorial optimization.

1.4 On Solving Semidefinite Programming Prob-
lems

Semidefinite Programs are convex minimization problems and can therefore be
solved in polynomial time to any fixed prescribed precision, using for instance
the ellipsoid method, see GrätscheI, Lov8.sz,and SchriJver [43]. In practice better
running times than the ellipsoid method are obtained by Interior-Point Methods
(IPMs), which have been intensively studied in the nineties.

During the last decade Bundle Methods led to an alternative way of solving
SDPs. The drawback of IPMs is that they are not capable of solving SDPs with
a large number of constraints. In the Spectral Bundle method the number of
constraints is not an issue and therefore this method is able to solve problems
which are out of reach to be solved by IPMs.

1.4.1 Interior-Point Methods
Over the last years, Interior-Point Methods turned out to be the most popular
algorithms for solving Semidefinite Programs. Most of the results go back to
the nineties, when Semidefinite Programming became a strong tool for solving
or approximating problems for several types of applications. Many variants of
IPMs have been developed, a survey can be found in the book of de Klerk [29].

It turned out that the most efficient variants are the so-called primal-dual
path-following methods, which we are going to explain here. The idea is to follow
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approximately a central path in the interior of the feasible region to reach the
optimum. This central path is obtained by replacing the optimality conditions
by "nearly" optimality conditions.

Throughout this section we make the following

Assumption 1.10 The Slater constraint qualification holds for (PSDP) and
(DSDP).

Let us recall the necessary and sufficient optimality conditions for (PSDP)
and (DSDP).

(OPT) A(X) = b, X E S;i (primal feasibility)
AT(y) - C = Z, Z E S;i, Y E]Rm (dual feasibility)
ZX = 0 (complementary slackness)

The idea is to replace the last condition by

ZX = Ji'!

with J-L> 0 and let J-L~ O. In order to derive this perturbed system, we define
the following auxiliary problem.

(PSDP,J mm (C,X) - J-Llogdet(X)
s.t. A(X) = b

XE S;+.

J-L> 0 is the so-called barrier parameter and -log det(X) the barrier function.
Dualizing the equality constraints, we get the Lagrangian

LJ1-(X,y) = (C,X) - J-Llogdet(X) + (y,b- A(X» (1.11)

and compute the gradients with respect to X and y, respectively, in order to
derive the KKT-conditions, necessary for optimality.

C - J-LX-I - AT(y)
= b-A(X).

(Note that \7xlogdet(X) = X-I.) Setting the gradients equal to zero, we get

(OPTJ1-) A(X) = b, X E S;i+
AT(y)+Z=C, ZES;i+, yE]Rm

XZ = J-LI.

Theorem 1.11 Under Assumption 1.10, (OPTJ1-) has for all J-L> 0 a unique
solution (X(J-L), Y(J-L),Z(J-L».
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A proof can be found for instance in Nesterov and Nemirovskii [98],Vandenberghe
and Boyd [126]or Monteiro and Todd [96]. We define

Definition 1.12 (central path) The smooth curve {(X(!L),Y(f-L),Z(!L)):!L >
O} is called the primal-dual central path.

Let ç = (X, y, Z), X E S:+, Z E S:+ be any point, not necessarily lying on
the central path. The goal is, to find ßç = (ßX, ßy, ßZ), such that ç + ßç
comes closer to the central path and iterate with smaller !L until f-Lis sufficiently
small (i.e. !L ---+ 0).

The system to be solved in order to find the appropriate ßç, that would bring
the current point on the central path is:

A(X + ßX) = b
AT(y + ßy) - C = Z + ßZ
(X + ßX)(Z + ßZ) =!LI

(1.12)

This system has m + n(nz+l) + nZ equations in 2n(nz+l) + m variables. Due to the
fact that the product of two symmetric matrices is not symmetric in general, this
system of equations is overdetermined and we cannot apply the Newton method
to solve it. Many variations of system 1.12 have been proposed, to fix this and
to obtain reasonable search directions. Before explaining one of these search
directions, we sketch a generic primal-dual path-following algorithm.

Algorithm 1.13 (generic primal-dual interior-point algorithm) see Mon-
teiro and Todd (96)

Input.
ça := (Xa, Ya,Za), Xa E S:+, Za E S:+, é > O.

Initialization.
!La := (Xa, Za) In.
k:= O.

while !Lk > é or IIA(Xk - b)lloo > é or IIAT(Yk) - C - Zklloo > é
determine a search direction ßÇk from a linearized model of 1.12 for

!L = akf-Lk,ak E [0,1], such that ßXk and ßZk are symmetric.
Çk+l := Çk + CikßÇk where Cik> 0 is chosen, such that

Xk+1 E S:+ and Zk+l E S:+.
!Lk+l = (Xk+1, Zk+l) In.
k := k + 1.

end

About twenty different search directions have been reviewed by Todd [123].
We will use the HKM-direction, that was developed independently by Helmberg,
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Rendl, Vanderbei, and Wolkowicz [56], Kojima, Shindoh, and Rara [74] and
Monteiro [95]. They solve the following system to obtain a search direction:

A(~X) = b - A(X)
AT(~y) - ~Z = z +0 - AT(y)
Z~X +~ZX = I-'J - ZX

(1.13)

These equations are solved for (~X, ~y, ~Z) and then ~X is symmetrized. Al-
though this idea seems quite simple, it is computationally very efficient. Theo-
retical convergence analysis shows, that for small E > 0 and appropriately chosen
J-L, in each iteration the full step yields a feasible solution. Moreover, a primal
and dual feasible solution pair (X, y) with duality gap less than E can be found
after O(J1ïllogEI) iterations (see Monteiro and Todd [96]).

1.4.2 Spectral Bundle Method
In Section 1.3 we have shown the relation between Eigenvalue Optimization and
Semidefinite Programming. ReImberg and Rendl [55]developed the Spectral Bun-
dle Method, a machinery to solve problem (EVP) and therefore, use this as an
alternative to Interior-Point Methods for solving SDPs. Interior-Point Methods
fail for SDPs with a large number m of constraints, since in every iteration a
system of order m has to be solved. For these problems the Spectral Bundle
Method may still obtain solutions in reasonable time. We explain the algorithm
following [55] and [51].

Recall, that in Section 1.3 we introduced

(1.14)

the function to be minimized. Two ingredients are used to minimize this function:
the bundle concept and the proximal point idea. To apply the bundle method, we
need to have a function Î, approximating f in the neighborhood of the current
iterate. Introduce

L(W, y) := (0 - AT(y), W) + bTy.

With (1.9) we can now rewrite f(y) as

f(y) = max{L(W,y): WE s;t, trW = I}.

Replacing the feasible region {W: W E s;t, trW = I} by a subset that is com-
putationally more efficient to handle, we have a minorant on f, that is easier to
handle than f itself. The proposed subset is

W = {aW +PVpT: a+trV = l,a 2: 0, V ES:}, (1.15)

where k is the number of columns in P and hence

Î(y) := max{L(W, y): W E W}. (1.16)
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P is constructed in a way, that it contains subgradient information of the current
iterate, but keeping r, the maximum number of columns in P, small for compu-
tational simplicity. (Note that parameter r controls the dimension of V.) To be
able of using more information without increasing r, W is used as an aggregate
subgradient. Before going into detail concerning the construction of P and W,
we explain the second ingredient of the Spectral Bundle Method, namely the
proximal point idea.

Due to the fact, that we deal with an approximation of f which is reliable
only in the neighborhood of the current iterate, one has to penalize displacement
from the current point, which results in

(1.17)

where u > 0 is the penalty parameter. Concerning this parameter, Helmberg and
Rendl [55]state the following

Remark 1.14 The choice of the weight u is somewhat of an art. There are
several clever update strategies published in the literature, see for instance Kiwiel
[71}, Schramm and Zowe [118}.

An iteration of the Spectral Bundle Method consists now in finding a new trial
point Ynew and depending on how much progress is made at this point, we do a
serious step or a null step. To keep notation simple, we skip the iteration counter
in the subsequent description of an iteration of the Spectral Bundle Method. Let
fi denote the current iterate. Ynew is obtained as the minimizer of (1.17), where j
is the minorant on f in the current iteration. This minimizer is obtained by first
solving

ma~ (0 - AT(fi), W) + bTfi - 21 (A(W) - b, A(W) - b)
WEW U

(1.18)

by an Interior-Point Algorithm (see Section 1.4.1) and from this we get Wnew =
a*W + PV* pT. The new iterate can then be easily computed by

Ynew = fi + ~(A(Wnew) - b).
u

(1.19)

If this new iterate shows significant progress on finding the optimum, we make
a serious step and the current iterate becomes Ynew' Otherwise a null step is
made, Le. the current iterate does not change, but information obtained during
this iteration is used to improve the model.

Updating matrix P is done as follows. As long as P does not contain r
columns, orthogonalize the new eigenvector with respect to P and add it as a
new column. If the maximum number of columns in P is attained, we exploit
the information available in a* and V*, being the maximizers of this iteration.
Let QAQT be the eigenvalue decomposition of V* and Q = [QI,Q2], with QI
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containing the eigenvectors associated to the 'large' eigenvalues of V*. Thus we
can rewrite the current maximizer

(1.20)

(1.21)

Then Pnew is computed such that it contains PQI and at least one eigenvector
to the current maximal eigenvalue of C - AT(Ynew), i.e. Pnew is an orthonormal
basis of [PQI vnew]. The remaining information contained in Q2 is included in
the new aggregate matrix W new by computing

1 - T
Wnew = A (a*W + PQ2A2(PQ2) ).

a* + tr 2

~ this way it is ensured, that the new aggregate matrix W new is contained in
Wnew.

We now have derived the necessary formulas for giving the formal description
of the algorithm.

Algorithm 1.15 (Spectral Bundle Method) Helmberg and Rendl [55}

Input.
yo E]Rm and eigenvector Vo to Àmax(C - AT(yO))'
ê > 0, improvement parameter mL E (0, ~).
weight u > 0, upper bound R ~ 1 on the number of columns of P.

Initialization.
k = 0, Xo = Yo, Po = Vo, Wo = vo(vof.

Iteration.
1. (Direction finding.) Solve (1.18) and obtain Yk+I from (1.19).

Decompose V* into V* = QIAIQf + Q2A2QI with rank(QI) ~ R - 1.
Compute Wk+I using (1.21).

2. (Evaluation.) Compute Àmax(C - AT(Yk+1)) and an eigenvector Vk+I'
Compute Pk+I by taking an orthonormal basis of PkQI Vk+l'

3. (Termination.) If f(xk) - A(Yk+d ~ ê then stop.
4. (Serious step.) If f(Yk+d ~ f(xk) - mL(J(xk) - lk(Yk+I)) then

set Xk+I = Yk+l and go to step 6.
Otherwise continue with step 5.

5. (Null step.) Set Xk+1 = Xk.
6. Increase k by 1 and go to Step 1.

For the proof of convergence the reader is referred to Helmberg and Rendl [55]. A
set of test graphs together with computational results for the Max-Cut relaxation
and the Lov8.sz 'l9-function (see Section 2.2) are provided in their paper. For
these instances the Spectral Bundle Method is by far superior than Interior-Point
Algorithms.
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1.4.3 Software for Solving Semidefinite Programs
Interior-Point Algorithms, as well as the Spectral Bundle Method have been im-
plemented as open source software. Some of the Interior-Point Codes are running
under Matlab, for instance SeDuMi (Sturm [122]), or SDPT3 (Toh, Todd, and
Tütüncü [125]), whereas e.g. CSDP by Borchers [24] is a C-code. The imple-
mentation of the Spectral Bundle Method is SBMethod (Helmberg) . A list of
links to the various packages can be found on the Semidefinite Programming
Website maintained by Helmberg [49]. Mittelmann [94] runs a website, providing
benchmarks for many SDP-solvers.



Chapter 2

Combinatorial Optimization

As the name reveals, in Combinatorial Optimization one wants to find an element
out of a set of combinatorial objects that is the optimizer for some given objective
function. More specifically, we have the following setting .

• A finite set E = {el, ... , en},

• a weight function w: E ---t Z, w( ei) being the weight of ei,

• a finite family F = {FI' ... ' Fm}, Fi ç E (feasible solutions),

• a cost function f : F ---t Z, f (F) = L:eEF w( e) (additive cost function),

• a problem
opt{f(F): FE F},

where 'opt' is replaced by either 'min' or 'max'.

Usually, such problems can be formulated as Integer Programs with binary vari-
ables, which indicate for each member of the collection, whether it belongs to the
subset or not.

A lot of problems fit into this definition. For example partitioning, assignment,
covering, scheduling, shortest path, travelling salesman, spanning tree, matching,
etc.

Before the year 1950, problems of this kind were studied independently of
each other, for a historical survey see Schrijver [120]. Then Linear and Integer
Programming became a unifying research topic and thus relations between these
problems were found and exploited.

Over the past years new technologies in various areas like telecommunications,
VLSI-design, production planning, etc. became more rapidly changing. Combina-
torial Optimization turned out to appear in all of these applications and thus the
research interest grew, since knowledge about problem properties and solution
algorithms led to a competitive advantage.

17
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Many textbooks on Combinatorial Optimization appeared during the last
years, for a comprehensive collection on this subject we refer to Schrijver [119].
Some Combinatorial Optimization problems that are of special interest in the
context of Semidefinite Programing are explained in this chapter.

2.1 The Max-Cut Problem
Let G = (V(G), E(G)) denote an edge-weighted undirected graph with vertex set
V(G) = {I, ... ,n} and m edges in the edge set E(G). Let We denote the weight
of edge e = [ij], meaning edge e E E (G) links vertices i, j E V (G). The Max-Cut
(MC) problem consists in finding a partition of the set of vertices into two parts
so as to maximize the sum of the weights of the edges that have one end-node in
each part of the partition.

Let 8 be a subset of V. We denote a cut by

ö(8) := {e E E(G): e = [ij], 18n {i,j}1 = I},

hence Ö(8) contains all edges having exactly one end-node in 8, which are the
edges linking 8 and V(G)\8.

w(T):= 2:We
eET

is the sum of the weights on edges in T ç E( G) and therefore the value of the cut
given by ö(8) is given by w(ö(8)) and the Max-Cut problem can be formulated
as

(MC) max w(ö(8))
s.t. 8 ç V(G).

Following the general formulation of a Combinatorial Optimization problem above,
set E equals the set of edges E(G), and :F is the set of all cuts of G. The cost
function is the sum of the weights on the edges that form the cut and the objective
is to maximize these costs.

The Max-Cut problem is known to be NP-complete and is one of the problems
on the original list of NP-complete problems, investigated by Karp [66]. It is not
only of highly theoretical interest, but arises also in many contexts and therefore
has been well-studied over the last years. Goemans and Williamson [39]show that
the ratio between the optimal cut value and the solution value of the basic SDP
relaxation of Max-Cut (MCSDP) (see Section 3.3.2), is at least 0.878 provided
there are non-negative weights on the edges. Note, that Hastad [48] showed that
it is NP-complete to approximate the Max-Cut problem with a factor bigger than
0.9412.

Various heuristics for finding good solutions, and relaxations for getting tight
upper bounds have been developed. We will review some of them in Chapter 3.
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2.2 The Stable Set Problem

19

A stable set or independent set in a given graph G = (V( G), E( G)) is a subset
I of V(G) such that no two vertices in I are adjacent. The maximum stable set
problem is the problem of finding a stable set of maximum cardinality. This max-
imum cardinality is usually referred to as the stability number or independence
number of a graph and denoted bya(G).

a(G) = max{III: I ç V(G), [ij] ~ E(G) Vi,j EI}. (2.1)

The stable set problem is closely related to two other problems, namely the
maximum clique problem and the coloring problem.

A clique in a graph is defined as a subset Q of V( G) such that all vertices in
Q are joint by an edge e E E(G). The maximum clique problem is therefore the
problem of finding a clique with maximum cardinality, denoted by weG),

weG) = max{IQI: Q ç V(G), [ij] E E(G) Vi,j E Q}. (2.2)

With G = (V (G), E( G)) being the complementary graph of G = (V (G), E( G)),
it is easy to observe that

a(G) = weG).

A coloring of a graph G = (V(G), E(G)) is a mapping ß: V(G) -+ {I, ... ,k},
where {I, ... , k} is the set of "colors" used, such that no two adjacent vertices
are assigned the same color. The minimum k is the so-called chromatic number
and is denoted by xC G),

x(G) = min{k: ß(i) =1= ß(j) for i,j E V(G) and [ij] E E(G)}. (2.3)

Since within a clique every vertex needs to be colored differently, we get the
following inequality:

weG) ~ x(G).

This inequality can be strict, for instance consider C5, a cycle with IVI = 5.
(w(C5) = 2 and X(C5) = 3.)

A graph is said to be perfect, if w( G') = x( G') for all induced subgraphs G'
of G. This definition has been introduced by Berge, who also conjectured, that
a graph is perfect if and only if it does not contain an odd cycle of length ~ 5 or
its complement as an induced subgraph (Berge [20], [21]). This conjecture was
proved recently by Chudnovsky, Robertson, Seymour, and Thomas [28].

LOV8sZ [88]introduced the 'I9-numberof a graph. This number is the optimum
of a semidefinite program and has the following property

a(G) ~ 'I9(G) ~ X(G). (2.4)
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To compute the t9-number, the SDP to be solved is:

(THETA) t9(G) = max eTXe
S.t. tr(X) = 1

Xij = 0 for i =1= j, [ij] E E( G)
XE S;i,

e being the vector of all ones. (For equivalent definitions see Grätschel et al. [43]
and Knuth [72].)The dual to (THETA) reads

(DTHETA) mm t
S.t. tI + L:ijEE(G) )"ijEij - J E S;i,

where J = eeT.

The problem of deciding for a given integer k, whether a( G) :::::k or x( G) :::;k
is NP-complete (Karp [66]). Moreover, Lund and Yannakakis [90] show that there
is a constant é > 0 such that no polynomial time algorithm exists that can achieve
ratio ne for the coloring problem unless P=NP. For the stable set problem Arora,
Lund, Motwani, Sudan, and Szegedy [6]show the existence of a constant é > 0 for
which there is no polynomial time algorithm that can find a stable set in a graph G
ofsize at least n-ea(G) unless P=NP. On the positive side, Karger, Motwani, and
Sudan [64] use Semidefinite Programming for coloring a k-colorable graph with
maximum degree ~ with O(~I-2/ky'log~logn) or O(nI-3/(k+I)y'logn) colors.

The fact that the t9-number can be computed in polynomial time and that it
satisfies the 'sandwich' inequalities (2.4) makes it valuable for many applications.
For perfect graphs it leads to the fact, that the maximum stable set problem
and the coloring problem can be solved in polynomial time, since equality for the
chromatic number and the clique number holds on these instances. For general
graphs the gap between t9(G) and a(G) can be arbitrarily large. However, Alan
and Kahale [2] state positive results about approximating a( G) via the t9-number.

2.3 The Graph Partitioning Problem
A problem related to Max-Cut is the graph partitioning problem. Again, we have
a graph G = (V(G), E(G)), IV(G)I = n, and edge-weights We, e E E(G). Fur-
thermore, numbers k and ml :::::m2 :::::... :::::mk are given, such that L:~=Imi = n.
We now like to find a partition of V(G) into VI, V2, ..• , Vk and lVii = mi, i E
{I, ... , k}, with a minimum total sum of the weights on the edges that are cut:

(GP) min L:I:Ss<t~kL:iEVs,jEVi W[ij]' (2.5)

This problem plays a major role in circuit design, for detailed applications we refer
to Lengauer [84]. In the special case of k = 2 and ml = m2 = n/2, the problem is
called the bisection problem. If there are no constraints on the cardinality of the
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subsets, than for k = 2 and maximizing the sum of the weights on the cut-edges,
we obtain the Max-Cut problem, see Section 2.1.

Let the columns of matrix X E {o,l}nxk, X = (Xij), be the characteristic
vectors of the sets of the partition, i.e.

{
I if i E Vj

Xij = 0 otherwise.

In order that each vertex i E V (G) is in exactly one set Vj, condition

must be valid. (ek, en being the vectors of all ones of size k and n, respectively.)
Furthermore, to ensure that mi vertices are in the set Yi, the constraint

m = (ml, m2, ... , mk)T, must be fulfilled.
Let A = (aij) be the adjacency matrix of the underlying graph. The value

1 1
-trAXXT = -trXT AX2 2

gives the sum of the weights on all edges that are not cut and therefore the weight
of the edges that are cut by this partition can be computed as

1_(eT Ae - trXT AX).
2

With L = Diag(Ae) - A being the Laplace matrix of the graph and the equality

trXTDiag(Ae)X = eTAe,

we can formulate problem (GP) as follows.

(GP) mm trXTLX
s.t. Xek = en

XTen = m
X E {O, l}nxk.

(2.6)

Barnes and Hoffman [15] and Donath and Hoffman [33] developed eigenvalue
based relaxations for this problem. The problem is relaxed to containing only
the constraint

XT X = Diag(m), XE ]Rnxk.

Through Theorem 2.1 Donath and Hoffman [33] obtain an eigenvalue based
bound.
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Theorem 2.1 Let A and m be defined as above and set M := Diag(m). Then

Iw(uncut)1 ::;

Thus we get

1
max{"2trXT AX: XTX = M}

11k

min{"2trMyT AY: yTy = h} ="2 LmjÀj(A).
j=l

1 k

Iw(cut)1 ~ "2(eTAe - L mjÀj(A)) .
. j=l

The proof can be found, for instance in Donath and Hoffman [33]or Rendl and
Wolkowicz [114].

Later on further SDP based bounds have been developed, confer Alizadeh [1],
Rendl and Wolkowicz [114],Wolkowicz and Zhao [127], Karisch and Rendl [65].

Besides that, formulation (2.6) is similar to the Quadratic Assignment Prob-
lem (QAP). The latest SDP relaxations oft he QAP are investigated in the paper
of Rendl and Sotirov [112].

2.4 The Max-Sat Problem
In order to explain the Maximum Satisfyability problem, we first need to intro-
duce some notation. Xl, ... , Xn are Boolean variables and a literal z is either Xi

or Xi (the negation of Xi). A clause C of length k is the disjunctive combination
of k literals, i.e. C = Zl V ... V Zk, a weight Wc is assigned to each clause C.
Clearly, clause C is satisfied, if at least one of the literals in the clause is assigned
value 1. The Max-Sat problem consists in finding an assignment of values 0 and
1 to the variables Xl, ... , Xn such that the total sum of the weights of satisfied
clauses is maximized. Given an integer k ~ 1, with the additional requirement
that each clause has length at most k, the problem is called Max-kSat.

Max-Sat and Max-kSat are known to be NP-hard. Hastad [48] showed that
there is no (~ + é)-approximation for any é > 0, unless P=NP.

Johnson [62]constructed a ~-approximation algorithm for Max-Sat. A linear
programming relaxation leads to the ~-approximation of Goemans and Williamson
[38].

Via Semidefinite Programming, Goemans and Williamson [39]improved slightly
their ~-approximation and obtained a 0.7554-approximation for Max-Sat.



Chapter 3

The Maximum Cut Problem

In this chapter we will take a closer look on one of the NP-complete combinatorial
optimization problems, the Max-Cut problem, already defined in Chapter 2. We
want to state some of the important properties and give an overview on solution
methods. It is easy to see, that the Max-Cut problem can be transformed to
a quadratic (0-1) problem and vice versa. We explicate this transformation and
point out an essential difference between Max-Cut problems and instances arising
from quadratic (0-1) problems.

3.1 Properties of the Max-Cut Problem
The Max-Cut problem on a graph G = (V(G), E(G)), previously defined in
Section 2.1, is given as

(MC) max w(<5(S))
S.t. S ç V(G).

For several applications the following notation will be more convenient. Let
V(G) := {I, ... ,n} be the vertex set of the given graph. The weights on the
edges are expressed through the weighted adjacency matrix A = (aij), where

a .. = a .. = {We if e = [ij] E E(G)
~J J~ a otherwise.

Given A, we introduce the Laplacian matrix L = (lij) associated to A, which is
defined as

n

lii =L aik, Vi E V(G)
k=l

lij = -aij, i =1= j, i,j E V(G),

hence L = Diag(Ae) - A.

23
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A vector X E {:l:l}n represents a cut in the graph in the sense that the sets
{i : Xi = I} and {i : Xi = -I} form a partition of the vertex set of the graph, i.e.
S = {i : Xi = I} and hence V\S = {i : Xi = -I}. It is easy to verify, that the
weight of the cut given by S, can be computed as w(8(S)) = ~XT Lx:

n

XT Lx = L liiX; + 2 L lijXiXj =
i=l l:5i<j:5n
n n

L(Laik) + 2 L (-aij).l + 2 L (-aij). (-1) =
i=l k=l [ij]~o(S) [ij]EO(S)

- 2 L aij + 2 L (-aij) + 2 L aij =
[ij]EV(G) [ij]~O(S) [ij]EO(S)

- 4w(8(S)).

(Note that XiXj = -1 if [ij] E 8(S) and XiXj = 1 otherwise.) Hence, Max-Cut is
equivalent to

(MC) max XT Lx
s.t. xE {:l:l}n. (3.1)

(3.2)

Another way of specifying a cut is via its incidence vector, a vector indexed by
the edge set of the graph and defined as follows.

S {I if e E 8(S)
Xe = 0 otherwise.

Let CUT denote the cut polytope, i.e. the convex hull of all incidence vectors of
cuts of graph G,

CUT = conv{xo(S): S ç V(G)}.

Thus, a third version of formulating the Max-Cut problem is given by the follow-
ing linear program:

(MC) max wTy
s.t. y E CUT.

Many theoretical results of the cut polytope are elaborated in the book of Deza
and Laurent [32]. Barahona and Mahjoub [13] characterize the facet defining
inequalities of the cut polytope and show different methods for constructing these
inequalities from known ones. Other papers dealing with the cut polytope are
for instance Barahona [10], Poljak and Thza [108], Poljak [105].

The Max-Cut problem is known to be NP-complete (Karp [66]) and it remains
NP-complete for some restricted versions, see Garey and Johnson [36]. However,
several classes of graphs are known for which the solution can be obtained in poly-
nomial time. To these classes belong graphs without long odd cycles (Grätschel
and Nemhauser [41]), planar graphs (Hadlock [45],Orlova and Dorfman [99]), or
more generally graphs not contractible to K5 (Barahona [9]). More properties for
certain classes of graphs are surveyed in Poljak and Thza [109].
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3.2 Quadratic (0-1) Programming and its Rela-
tion to Max-Cut

In this section we want to show, that solving a quadratic (0-1) problem and
solving a Max-Cut problem is essentially the same. Given a matrix Q of order n
and a vector e, define the quadratic function

We consider the following unconstrained quadratic (0-1) program:

(QP) mm q(y)
S.t. Y E {a, l}n.

(3.3)

(3.4)

This problem is equivalent to (MC), which has first been pointed out by Hammer
[46]. The reduction from (QP) to (MC) has also been carried out in Barahona,
Jünger, and Reinelt [14], a compact table of the transformation can be found
in Helmberg [50]. For completeness we show in detail in the subsequent two
subsections how to transform one problem into the other.

3.2.1 (QP)-+ (MC)

Define
W - ( a (Qe Q+cf)

- - (Qe + c)

and consider W to be the adjacency matrix of a graph with vertex set V
{a, 1, ... ,n}. Then the Laplacian is given by

L Diag(We) - W =
_ ( a (Qe + cf) _ ( eTQe + eTeo)

(Qe + c) Q a Diag(2Qe + c) .

Let X denote the incidence vector of a cut of this graph with value ~XT Lx. With-
out loss of generality we can assume Xo = 1. Then, y defined as

1
Yi = 2 (Xi + 1), 1::; i ::;n

is a vector in {a, l}n and therefore solution of (QP).
The solution value of (MC) of the adjacency matrix W expressed in terms of

Y through the equality Xi = 2Yi - 1, 1::; i ::;n is the following:
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(
1 ) T ( 0 (Qe + C)T )

2y - e (( Qe + c) Q

- (q~) Diag(2~e + c) )) ( 2y ~ e ) =

_ ( 1 ) T ( 0 (Qe + cf) ( 1 )
2y - e (Qe + c) Q 2y - e

(
q(e) ) T ( 1 )

- Diag(Qe) + Diag(Qe + c) e =

- (0 + 4(Qe + C)Ty - 2q(e) + 4yTQy - 4eTQy + eTQe)
-(q(e) + eTQe + q(e)) =

_ 4(yTQy + eT y - q(e)).

3.2.2 (MC)-+ (QP)
Conversely, let be given a graph with node set V = {O,1, ... , n} and the (n +
1) x (n + 1) Laplacian

L = (ln Lf2)
L12 L22

where Ln is a n x n matrix. Let y be a solution of (QP) with Q = L22 and

c = L12 - L22e. Then, x = ( ~ ), Xo E IR, x E IRn defined as

Xo = 1, x = 2y - e

is a vector {::I:1}n+1 and therefore a solution of (MC). The value of the cut
associated to this solution, in terms of y is as follows:

q(y) -

-

-

-

-

-

yTQy + cTy
yT LnY + (L12 - L22ef y

~(x + e)L22(x + e) + ~(L12 - L22e)T(x + e)
4 2

~(XT L22XT + 2eT L22X + eT L22e) + ~(Lf2X + Lf2e - eT L22x - eT L22e)
4 2

~(xT L22X + 2Lf2X + ln -ln - eT L22e + 2Lf2e)
4
1
_xT Lx - (ln - 2Lf2e + eT L22e).
4
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Therefore, -Lf2)
Le.
22

3.2.3 (MC) Ys. (QP)
For all algorithms available, it turned out that solving instances of (MC) seems
to be a much harder job than solving instances arising from (QP). In order to
investigate this behaviour, let us take a closer look on two random instances. We
generate an unweighted random graph with n = 25 vertices and edge-probability
~. Also, we generate a random instance of (QP), where all entries in Q and care
chosen from [-lOa, 100]. Due to the small size of these problems, we are able to
enumerate all 224 solutions, and plot the sorted and normalized objective values
in Figure 3.1.

The picture nicely shows that objective values of the (QP) instances are quite
evenly spread over the interval of possible values. Contrary, for (MC) the density
of cut values in the top quarter of the interval is clearly much higher than in the
remaining part. For the (MC) instance, half of the solution values are within
25% of the optimum, whereas for the (QP) instance only 0.5% are in that 25%
regIOn.

It is evident that the optimal solution is much harder to identify when ten-
thousands of solutions lie within a 5% interval of the optimum, as it is the case
of the (MC) instance, whereas for the (QP) instance only a few hundred are
that close. (The bottom-plot in Figure 3.1 shows for both problems the best
10,000 objective values.) Therefore, solving problems originated from (MC) are
obviously more challenging than (QP) problems.

3.3 Relaxations of the Max-Cut Problem
In this section we recall the most popular relaxations of the Max-Cut problem
together with some of the recent methods for solving it to optimality. We sketch
the algorithms and summarize their limits. A survey of techniques developed
before 1980 can be found in Hansen [47].

3.3.1 Relaxations Based on Linear Programming

Consider the linear program (3.2). For a graph G = (V, E) define y E IRE as
y(E) := LeEE Ye. The observation that any odd cycle intersects with a cut on an
even number of vertices motivates the construction ofthe odd cycle inequalities:

y(F) - y(C\F) ::; IFI- 1 for each cycle C ç E, F ç c, IFI odd. (3.5)

A special class of odd cycle inequalities are the triangle inequalities, which arise
when C in (3.5) is a cycle of length three, i.e. a triangle. For F = C (hence
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Figure 3.1: Random data, n = 25. Plot on top: sorted and normalized cost values
for an unweighted random graph (dashed-dotted line) and a random QP instance
(dashed line). Plot in the middle: plotting only those values, which are within
50% of the optimum. Plot on bottom: zooming in to the 10,000 best solutions.
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(3.6)

IFI = 3), we get the inequality y(F) :::;2 and for FcC (IFI = 1) we obtain
y(F) - y( C\F) :::;O. So, if C is formed by the edges [ij], [ik], Uk], we obtain

Yij + Yik + Yjk < 2
Yij - Yik - Yjk < a

-Yij + Yik - Yjk < a
-Yij - Yik + Yjk < a

The odd cycle inequalities and also the trivial inequalities a :::;Ye :::; 1,e E E
are all valid for any y E CUT (the cut polytope, see Section 3.1). Therefore,
a linear programming relaxation of the Max-Cut problem can be derived by
replacing the constraint y E CUT in (3.2) by the odd cycle inequalities and
a :::; Ye :::; 1, e E E. Nevertheless, this LP has then an exponential number
of inequalities and therefore an attempt of feeding this problem into some LP
solver might already fail when specifying all the constraints. On the other hand,
Grätschei, LOV8sZ, and Schrijver [42]show that one can optimize a linear objective
function over a polytope in polynomial time if and only if one can solve the
separation problem for this polytope in polynomial time. Barahona and Mahjoub
[13] give a polynomial time algorithm for separating the cycle inequalities and
thus a cutting plane approach can be developed, where the LP relaxations can
be exploited by using the cycle-inequalities in an iterative algorithm.

Barahona et al. [14]designed such a cutting plane algorithm within a Branch
& Bound framework that uses these inequalities. They solve in the root node the
trivial LP

max wTy
s.t. 0:::; Ye :::;1, e E E

and generate then cutting planes not only at the root, but also at each node of
the Branch & Bound tree. They sketch the cutting plane procedure performed
at each node as follows:

begin
repeat

solve LP;
obtain lower bound;
if successful then try to fix variables;
try to generate cutting planes;
revise LP;

until no cutting planes generated;
if LP solution feasible

then backtrack
else branch

end

To obtain a lower bound (Le. finding a cut in the graph), a heuristic is
applied to the solution obtained by solving the LP. This heuristic computes a
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maximum spanning tree in the original graph with edge weights lYe - ~ I (y E IRE is
the LP solution) and assigns the vertices to one ofthe two subsets of the partition
according to the weights on the edges of this tree. This yields a feasible solution
to the Max-Cut problem.

The lower bound serves for fathoming nodes in the Branch & Cut tree, but
is also used for fixing variables. If Ye = a and ZLP - de < ZF, where ZLP is the
objective function value, dE IRE the reduced cost vector and ZF the value of the
best known cut in G, clearly we can fix the variable associated to this edge to O.
Similarly, if Ye = 1 and ZLP + de < ZF, we can fix the variable to 1. Furthermore,
edges, that belong to a subgraph induced through the edges fixed to a or 1, can
be fixed by logical implications.

Odd cycle inequalities are used to generate cutting planes. Several ideas
are incorporated for finding violated odd cycle inequalities. Barahona et al. [14]
proceed according to the followingorder, until violated inequalities are found:

1. Enumerate all 3-cycles.

2. Apply a coloring heuristic for finding violated odd-cycle inequalities. This
heuristic guarantees, that in an integral solution, that is not a cut, violated
odd-cycle inequalities will be found.

3. Apply a spanning tree heuristic to detect violated odd-cycle inequalities.

4. Use exact separation (see Barahona and Mahjoub [13]).

Branching is done by choosing the variable Xe with fractional value closest to
~, and among those one with maximum absolute objective function coefficient.

Recent results on a refinement of this LP based cutting plane algorithm are
due to Liers, Jünger, Reinelt, and Rinaldi [87]. They focus on solving toroidal
grid graphs arising from physical applications. Since these graphs are sparse, LP
based method are the proper tool for solving these instances.

Limits of this method: The computational results presented in Barahona
et al. [14]show that graphs of any density up to n = 30 nodes can be computed
in reasonable time. But with an increasing number of nodes, the limits on the
density of the graphs decreases rapidly. Graphs with n = 100 nodes can only
be solved, if the edge density is at most 10%. The algorithm of Liers et al. [87]
solves 3-dimensional toroidal grid graphs with Gaussian distributed weights of
size 7 x 7 x 7 within minutes and 2-dimensional of size 20 x 20 within seconds.
However, for dense instances also this algorithm is not practical.

3.3.2 A Basic SDP Relaxation
Consider (MC) formulated as (3.1) and do a transformation of variables, namely

X:= XXT.



3.3. RELAXATIONS OF THE MAX-CUT PROBLEM 31

(3.7)

Hence X has the properties that it is positive semidefinite, it has rank one and
all diagonal elements are equal to one. Furthermore, the value of a cut associated
to X can be computed as

111_xT Lx = -trLX = - (L X)4 4 4'.
Thus an equivalent formulation of the Max-Cut problem is

(MC) max (L, X)
s.t. diag(X) = e

rank(X) = 1
X E sn, X ~ o.

A semidefinite relaxation can be obtained by simply dropping the rank-1 con-
straint:

Its dual form

(MCSDP) max (L, X)
s.t. diag(X) = e

X E sn, X ~ o.
(3.8)

(3.9)

(3.10)

(MCDSDP) min eTu
s.t. Diag(u) - L ~ 0

was introduced by Delorme and Poljak [30] as the (equivalent) eigenvalue opti-
mization problem

(MCEIG) mm n>'max(L - Diag(u))
s.t. uTe = 0

u E ]Rn.

The primal version (MCSDP) can be found in Poljak and Rendl [107].
The model (MCEIG) is used in Poljak and Rendl [106] as the bounding

routine in a Branch & Bound framework.

Limits of this method: This basic SDP bound can be computed rather
cheaply by using for instance an Interior-Point algorithm. However, within a
Branch & Bound scheme the progress of the bound at each node of the B&B tree
is disappointingly small and therefore the number of nodes in this tree becomes
rather large, already for medium sized problems. The maximum cut in graphs
up to n = 50 nodes can be computed quite efficiently, but for larger n a solution
in reasonable time can only be obtained for instances where the initial gap is
already very small.

Further SDP based MC relaxations. This basic relaxation has been ex-
ploited in various ways during the past decade. For example it can be strength-
ened by the so-called hypermetric inequalities. Other relaxations of (MC) arising
from SDP are the so-called lift-and-project methods. A separate chapter is ded-
icated to these SDP relaxations (Chapter 4).
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3.3.3 Convex Quadratic Relaxations

Billionnet and Elloumi [23] came up with the idea of convexifying the objective
function and then using a Mixed-Integer Quadratic Programming (MIQP) solver
for solving problem (3.4). Their algorithm works in detail as follows. Consider
problem (QP) and define for any vector u E ]Rn the Lagrangian

n

qu(x) := q(x) +LUi(Xi - x~) = xT(Q - Diag(u))x + (c + U)T X.
i=l

It is easy to see, that an equivalent problem to (QP) is

(QPu) mm qu(x)
S.t. x E {O,l}n. (3.11)

Relaxing the integrality constraint in problem (QPu) gives the lower bound ß(u)
on (QP),

ß(u) = min qu(x)
s.t. 0::; Xi::; 1, i E {I, ... ,n}.

If the vector u is chosen, such that Q - Diag( u) is positive semidefinite, ß( u) is
obtained by solving a convex quadratic problem, which can be done efficiently.
Now, if u* is the maximizer of ß(u), the "optimal" lower bound ß* will be ob-
tained, i.e.

ß* = ß(u*) = max{ß(u) : (Q - Diag(u)) ~ O,u E ]Rn}.

Billionnet and Elloumi [23] observe, that the çlual to this SDP coincides with the
basic Max-Cut relaxation (MCSDP), see Section 3.3.2.

The solution of problem (QP u) (or (QP u' ), respectively) can be derived
by using an MIQP solver, Le. a Branch & Bound algorithm using ß(u), the
continuous relaxation of (QPu), as bound.

The computational effort for this algorithm can be summarized as follows:

• Preprocessing phase: solve an SDP to obtain a vector u* and a bound ß* .

• Use an MIQP solver for solving problem (QPu')' Even though the compu-
tation of the bounds is very cheap, the number of nodes in the Branch &
Bound tree typically exceeds 100,000 for problems of n = 100 variables, as
reported in [23].

Limits of this method: Quadratic problems with some special structure can
be solved up to n = 100 variables. But the method is not capable of solving
certain classes of Max-Cut instances of this size (for example, graphs with edge
weights chosen uniformly from {-I/O/I}).
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3.3.4 Second-Order Cone Programming Relaxations

Kim and Kojima [68], and later on Muramatsu and Suzuki [97] use a second-
order cone programming (SOCP) relaxation as bounding routine in a Branch &
Bound framework to solve Max-Cut problems. Second-order cone programming
is a special case of symmetric cone-programming. The second-order cone Kn is
defined by

SOCP can be used to relax nonconvex quadratic problems. Muramatsu and
Suzuki [97]propose an SOCP relaxation of (MC) that includes convex quadratic
constraints, which reflect the structure of the graph. They are able to incorporate
the triangle inequalities (see Section 3.3.1) to tighten the feasible region efficiently.

However, the basic SDP relaxation (see Section 3.3.2) performs better than
their SOCP relaxation and the method works only for sparse graphs.

Limits of this method: The algorithm is capable of solving very sparse in-
stances only. The largest graphs for which solutions are reported are random
graphs (weights between 1 and 50) of n = 120 nodes and density 2%, and graphs,
which are the union of two planer graphs up to n = 150,d = 2%.

3.3.5 Branch & Bound with Preprocessing

Pardalos and Rodgers [102], [103] solve the quadratic program by Branch &
Bound using a preprocessing phase where they try to fix some of the variables.
The function to be minimized is (3.3). The test on fixing the variables exploits
the fact, that if x* is the global solution of

min{q(x) : x E 5}

(5 being a convex compact set), then x* is also optimal for the linear program

min{(V'q(x*)l x : x E 5}.

Limits of this method: Similar to the cutting plane technique in Barahona
et al. [14], dense instances up to n = 30 and sparse instances up to n = 100
can be computed. Special classes of instances can be solved efficiently up to
n = 200. These instances have off-diagonal elements in the range [0,100] and
diagonal elements lying in the fixed interval [-1,0], for the case I = 63 (the
density is 100%). For other values of I, the problem may become much more
difficult to solve. However, the method fails forgeneral dense problems with
n = 50 variables.
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3.4 A Rounding Heuristic Based on SDP
The basic SDP relaxation (MCSDP) can be used to obtain a feasible solution of
the Max-Cut problem, i.e. to generate a cut. This method is called the Goemans-
Williamson hyperplane rounding technique [39] and works as follows. Let X =
(Xij) be the optimal solution of (MCSDP). We have to find vectors VI,"" Vn,

Vi E jRk (for some k :S n), such that Xij = vT Vj' This can be done, by computing
the Cholesky Factorization VTV of X, with V E jRkxn. Some random vector r is
then used to set

8:={i:vTr~O} .

and obtain in this way a cut 6(8). This process can be iterated with varying
random vector r.

The cut obtained by this hyperplane rounding technique may be further im-
proved by flipping single vertices. Also, instead of the solution matrix X of the
SDP, a convex-combination of this matrix X with some cut-matrix XXT used to
find the Cholesky factorization may improve the result.

Summarizing, generating good cuts can be done iteratively in basically three
steps:

1. Apply the Goemans-Williamson hyperplane rounding technique to the pri-
mal matrix X obtained from solving the (MCSDP). This gives a cut-vector
x.

2. The cut x is locally improved by checking all possible moves of a single
vertex to the opposite partition block.

3. Bring the rounding matrix towards a good cut by using a convex-combination
of X and xxT. With this new matrix go to 1. and repeat as long as one
finds better cuts.



Chapter 4

SDP Relaxations of the Max-Cut
Problem

In the previous chapter several properties and solution approaches of the Max-Cut
problem have been investigated and we gave a brief description of a basic semidef-
inite relaxation. In this chapter we want to focus on models, that use Semidefinite
Programming for obtaining upper bounds to this NP-complete problem.

4.1 The Basic Relaxation
The basic Max-Cut relaxation has already been derived in Section 3.3.2 as follows:

(MCSDP) max (L, X)
s.t. diag(X) = e

X E sn, X t 0

and its dual form

(MCDSDP) mm eT u
s.t. Diag(u) - L t O.

We denote the feasible set of (MCSDP) as

En := {X E Sn: diag(X) = e, X tO},

(4.1)

(4.2)

(4.3)

called the elliptope. A study of this convex set can be found in Laurent and
Poljak [78], [79].

As already mentioned in Section 2.1, for graphs with non-negative edge weights,
the optimal solution of (MCSDP) is at most 14% above the value of the maxi-
mum cut [39].

Several strategies have been applied for strengthening this SDP-based relax-
ation. We will explore these methods in the subsequent sections.

35
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4.2 Strengthening the Basic Relaxation
In Section 3.3.1 we introduced the odd-cycle inequalities, and as a special case
of it, the triangle inequalities, to strengthen the LP relaxation of the Max-Cut
problem.

Similar to the LP case, also the SDP bound can be improved by exploiting
the observation, that in any cycle of length three, exactly zero or two edges are
cut. Considering matrix X = (Xij) representing a cut, the following inequalities
must be valid for all 1 :::;i < j < k :::;n:

Xij + Xik + Xjk > -1
Xij - Xik - Xjk > -1

(4.4)
-Xij + Xik - Xjk > -1
-Xij - Xik + Xjk > -1

The polytope containing all matrices X E Sn with diag(X) = e and satisfying
inequalities (4.4), is called the metric polytope and denoted by MET.

MET :={X ESn: diag(X) = e, Xij + Xik + Xjk 2: -1,
Xij - Xik - Xjk 2: -1, -Xij + Xik - Xjk 2: -1, (4.5)
-Xij - Xik + Xjk 2: -I}.

This leads to the following relaxation, proposed in Poljak and Rendl [107]:

(SDPMET) I max (L, X)
s.t. X EMET

X!: 0
(4.6)

The number of inequalities of (SDPMET) is growing rapidly with increasing di-
mension n. Including all these triangle inequalities and then solving the program
by an Interior-Point Method (see Section 1.4.1)is intractable already for small
n. Computational results of solving this SDP with successively including the
4(~) triangle inequalities can be found in Helmberg et al. [56]. Results are also
given in Rendl [111], where only a limited number of these triangle inequalities
is considered.

A more general class of inequalities are the hypermetric inequalities, studied
in Deza and Laurent [31]. Let b be an integer vector with L:~=lbi is odd. This
guarantees that

IxTbl 2: 1 for all X E {::I::l}n.

The following equivalences always hold:

And therefore the hypermetric inequalities must be valid for all matrices in the
cut polytope.
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The triangle inequalities can be derived as a special case of the hypermetric
inequalities by setting for the triangle formed by the vertices i, j, k:

and
bi=bj=l, bk=-l,bl=O, 'ïll~{i,j,k}.

Helmberg and Rendl [54] use the hypermetric inequalities as cutting planes
and solve the SDP by an Interior-Point Code. At the initial step of the algorithm
they consider the basic semidefinite relaxation (4.1). Inequalities are added while
solving the relaxation (i.e. after some Newton steps), as well as after the exact
solution to the relaxation has been obtained. Then the optimization process
is restarted again. Later on, Helmberg [50] improved this algorithm by fixing
variables.

This algorithm has been used in a Branch & Bound framework. In Helmberg
and Rendl [54] several branching rules are considered and discussed carefully.
Although the relaxation produced very tight bounds, the results of the Branch
& Bound code remained below the expectations of the authors. The number of
nodes in the Branch & Bound tree is very small, but the computation time per
node may be rather large. Most graphs up to n = 50 vertices can be solved in
the root-node of the Branch & Bound tree. Instances up to the size n = 100 can
still be solved, but the computational effort may be very high. Graphs with more
than 100 vertices are intractable for this algorithm.

4.3 Lift-and-Project Methods
Since the nineties several approaches have been developed to construct relaxations
to NP-hard problems by representing the polytope over which wewant to optimize
as the projection of another polytope lying in a higher dimensional space. They
can be classified into the BCC method due to Balas, Ceria, and Cornuéjols [8],the
SA method by Sherali and Adams [121], the LS method of Lovasz and Schrijver
[89], and the method of Lasserre [76]. Details and relations about these lift-and-
project methods can be found in the papers of Laurent [77]or Laurent and Rendl
[80].

4.3.1 The Lifting of Anjos and Wolkowicz

Anjos and Wolkowicz [3] introduced an SDP relaxation for Max-Cut via a sec-
ond lifting. They obtain the relaxation by adding redundant constraints to
(MCSDP) and then use Lagrangian duality for deriving the dual of the dual.
After a second lifting they end up with a relaxation called (SDP3), which is the
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following:

(SDP3) max (HL, Z)
s.t. diag( Z) = e

ZO,t(i) = 1 (i E {I, ... ,n}) (4.7)
ZO,T(i,j) = ZT(i,k),T(k,j) (Vk, 1::;i < j ::; n)
Z E St(n)+l, Z t O.

Here, t(i) = i(i + 1)/2 and

T(' .)._ { tU - 1) + i if i ::;j
1" J.- t( i-I) + j otherwise.

The matrix in the objective is

H - ( 0 ~dSveoC(L)T)
L - ~dsvec(L)

where dsvec is the operator that forms a t(n)-vector columnwise from an n x n
symmetric matrix while ignoring the strictly lower triangular part and multiply
the off-diagonal entries by two.

Another way to derive this relaxation is as follows. Let V E {::I::1}n be a vector
representing a cut and z E jRt(n)+l, indexed by {0} U V(Kn) U E(Kn), Kn being
the complete graph on n vertices, and E(Kn) denoting the set of all subsets of
V(Kn) of cardinality two (thus, representing all edges in the complete graph).
Define

Thus,

z0:= 1
Z{i} := ViVi, i E {I, ... ,n}
Z{i,j} := ViVj, 1 ::;i < j ::; n

(4.8)

Z=

Vn-l,n

, Z E {::I::I }t(n)+l
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and zzT yields the following matrix:

39

Z{i,j},0

Z{i},{i}

Z{i,j},{i}

Z{i},{k,l}

Z{i,j},{k,l}

(4.10)

If this matrix corresponds to a cut, through the equalities

Z{i,k},{k,j} = Z{i,k}Z{k,j} = ViVkVkVj = ViV~Vj = ViVj = Z0,{ij},

which hold for all k and 1 ::; i < j ::;n, we obtain the following set of triangle
equalities:

Z{i,j},{j,k} Z0,{i,k}
Z{i,k},{j,k} Z0,{i,j} 1 ::; i < j < k ::;n (4.9)
Z{i,j},{i,k} Z0,{j,k}

Also, clearly all the elements in the main diagonal have to be one, since (vi)2 = 1
and (ViVj)2 = 1. And via Z0,{i} = vr = 1 we obtain (SDP3), using a slightly
different way of indexing matrix Z (with rows/columns permuted in HL and Z).

(SDP3) max (HL, Z)
s.t. diag(Z) = e

Z0,{i} = 1 (i E {I, ... ,n})
Z0,{i,j} = Z{i,k},{k,j} (Vk, 1::; i < j ::;n)
Z E St(n)+l, Z t O.

The leading principal minor of any matrix satisfying the constraints of (SDP3) is
det G~)= 0 and therefore every feasible Z is singular (see Lemma A.2). Hence,
(SDP3) has no strictly feasible points. Anjos and Wolkowicz [3] show that
matrix Z E St(n)+l can be projected on the lower dimensional space of dimension
t(n - 1) + 1 without loosing sparsity of the constraints. We want to give an
alternative and maybe more intuitive proof below. Before, we make the following

Observation 4.1 Let Z E St(n)+l be feasible for (SDP3) and let Z be indexed
by {0} U V(Kn) U E(Kn). Then Z is always of the form

where e E ]Rn is the vector of all ones, S is a vector of length t( n - 1) and
S E St(n-l).
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Proof: Consider any Z from the feasible set of (SDP3), with the following block
structure:

Z = (~ U; ~:),
s R S

with u E IRV(Kn), S E IRE(Kn). In order to prove the observation, we have to show
that

u = e, U = eeT, R = seT.

Because of the constraint ZO,{i} = 1, we have u = e.
Then the leading 3 x 3 principal submatrix of Z reads

(~ ~ U~2)'
1 U12 1

Since every principal minor of a positive semidefinite matrix has to be non-
negative (see Theorem A.l) we get

U12 = 1.

Similarly we can derive, that any other Uij has to be equal to one if Z is positive
semidefinite, and thus we obtain U = eeT.

In the same way we get, for the principal submatrix formed by the rows/columns
{0, {k}, {i,j}}

(
1 1 S{i,j} )
1 1 r{k},{i,j}

S{i,j} r{k},{i,j} 1

that r{k},{i,j} = S{i,j} must hold and therefore we end up with R = seT and we
have proved the observation. 0

Theorem 4.2 Let Y E St(n-l)+l be indexed by {0} U E(Kn), E(Kn) being the
collection of all the subsets of V(Kn) of cardinality two. (V(Kn) is the set of
vertices of the complete graph on n vertices.) Let QL be defined as

Q '= (~~~=lliiusvec(Lf)
L . usvec(L) 0 '

where usvec(L) forms a vector columnwise from a symmetric matrix considering
only the strictly upper triangular part of the matrix. Consider the following 3DP.

(SDP3p) max (QL, Y)
s. t. diag(Y) = e

Y0,{i,j} = Y{i,k},{k,j} (Vk fJ. {i,j}, 1~ i < j ~n)

Y E St(n-l)+l, Y t O.

There is a bijection between the feasible sets of (SDP3) and (SDP3p).
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Proof: Let F ç St(n)+l be the set of matrices feasible for (SDP3) and Fp ç
St(n-l)+l the set of matrices feasible for (SDP3)p. Define f: F -t Fp, as

f(Z) = Z{0}UË(Kn)'

meaning that f(Z) is the prin~pal submatrix of Z, that contains only the rows
and columns indexed by {0}UE(Kn), hence we simply erase the columns indexed
by V(Kn). (Note, that it is easy to verify that every Y in the image of f is feasible
for (SDP3p ).)

Due to Observation 4.1, every matrix Y E Fp can be extended to a ZEF
in a unique way. The fact that it is possible to extend Y to a feasible Z implies
that f is surjective, and because of the fact, that this way of extending is unique,
f is injective. Thus, f is a bijection between Fand Fp. 0

Anjos and Wolkowicz [3]prove that relaxation (SDP3p) lies in the elliptope
and satisfies all the triangle inequalities. Thus, the bound of this relaxation is at
least as good as the bound obtained by solving (SDPMET), which is already a
strengthening of (MCSDP) (see Section 4.2). In fact they prove,

CUT ç F ç £ n MET

and show that these inclusions are strict for n 2: 5.
They also present numerical results for graphs up to n = 12 vertices and

observe, that the (SDP3p) relaxation often yields the optimal value of (MC).
Nevertheless, since the dimension of the matrix is (;) + 1 and the SDP has
1+ G) + 3(;) linear equality constraints, it is out of reach to solve it for graphs
of size n = 50.

4.3.2 The Lifting of Lasserre

Consider the general problem

max cTx
s.t. Ax ~ b

xE {o,l}n

and denote

K:= {x E [0, It: Ax ~ b}, P:= conv({x E {a, l}n: Ax ~ b}).

(4.12)

Lasserre [76] constructs a hierarchy of semidefinite relaxations Qi of P with the
property
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The motivation for these relaxations comes from results about moment matrices.
A detailed study and the proof of convergence can be found in Lasserre [76]or
Laurent [77].

Applied to the Max-Cut problem, relaxation (Qo) coincides with the basic
SDP relaxation (MCSDP). The relaxation (QI) is the following:

(QI) max (ML, Y)
s.t. diag(Y) = e

Y0,{i,j} = Y{i,k},{k,j} (Vk fi. {i,j}, 1~ i < j ~n)
Y{i,j},{h,k} = Y{i,h},{j,k} = Y{i,k},{j,h}

(for all distinct i, j, h, k E {I, ... , n})
Y E S(~)+l' y?: o.

(4.13)

Clearly, this is a strengthening of (SDP3p), introduced in the previous section.
The constraints additional to (SDP3p), we call them 4-cycle equalities, can also
be motivated as follows. Consider y E lR(~)+l, with

Y0:= 1
Y{i,j} := ViVj, 1 ~ i < j ~n

(4.14)

with V E {::f:1}n, and Y constructed as Y = yyT. Then, for all distinct i, j, h, k E
{I, ... ,n}, we obtain

Y{i,j},{h,k} = Y{i,j}Y{h,k} = ViVjVhVk = Y{i,h}Y{j,k} = Y{i,h},{j,k},

and
Y{i,j},{h,k} = Y{i,j}Y{h,k} = ViVjVhVk = Y{i,k}Y{j,h} = Y{i,k},{j,h}.

Similar to (SDP3p), for various graphs, the optimal cut value can be found via
(QI). Nevertheless, the number of constraints is 1+ (~)+ 3(~) + 2(~) and thus
the SDP is intractable to be solved already for graphs on a few vertices.

4.4 Between the Basic Relaxation and a First
Lifting

Optimizing over the Anjos-Wolkowicz or the Lasserre relaxation, introduced in
the previous sections, amounts to solving an SDP having a matrix variable of
order (~) + 1 and in case of Anjos-Wolkowiczwe have to deal with 1+ (~)+3(~)
linear equalities, in the case of Lasserre with 1+(~)+3(~)+2(~) linear equalities.

In Table 4.1 some numbers are listed, giving the sizes of the SDPs to be
solved. In the first column the number of vertices is given. The second column
shows the number of edges of the complete graph, Le. the dimension of the matrix
variable minus one. In the third column the numbers of constraints (additional
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n
10
20
30
50

100
200

45
190
435

1225
4950

19900

360
3420

12180
58800

485100
3940200

2 n

420
9690

54810
460600

7842450
129369900

vertices edges 3k l
40 412 3689 23020

100 581 3126 9054
200 496 891 689
216 857 1926 3831
343 1365 3069 6117
512 2041 4590 9159

Table 4.1: Problem sizes, complete
graphs

Table 4.2: Problem sizes, sparse
graphs

to the all-ones diagonal constraints) for Anjos- Wolkowicz are listed (i.e. three
times the number of triangles) and column four shows the number of constraints
to be added to the Anjos- Wolkowicz relaxation when solving the SDP proposed
by Lasserre.

Because of the huge number of constraints, the relaxation of Lasserre is in-
tractable, already for graphs on a few vertices. The Anjos- Wolkowicz relaxation
can be solved for small instances, but both the dimension of the matrix variable
and the number of constraints increase very fast and thus, the problem of obtain-
ing a bound for a graph on 50 vertices by the Anjos- Wolkowicz model cannot be
solved anymore.

However, in Table 4.2 the numbers of vertices, edges, triangle-constraints and
4-cycle constraints of some sparse graphs are given (k is the number of triangles,
l is the number of 4-cycles). Apparently, if we would consider instead of any pair
of nodes, only the support of the graph, i.e. edges e with We =I 0, the matrix-
variable and the number of constraints would be of reasonable size, even if the
graph consists of a few hundred vertices.

4.4.1 Exploiting Sparsity

The idea is to formulate an SDP considering not the complete graph, but indexing
the matrix variable only with those pairs of vertices, that are linked by an edge
with non-zero weight, i.e. the edges in the set E( G). Let y be a vector, indexed
by the edge set and zero, defined by

Y0 .- 1

Y{i,j} ViVj, [ij] E E(G),i < j
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Thus,
1

VIV2

y= , Y E {:I::I}m+l
ViVj

and yyT yields the matrix:

( Y", Y0, k,l )Y = yyT =
Y{i,j},0 Y{i,j},{k,l}

If this matrix corresponds to a cut, the following equalities must hold:

Y{i,k},{k,j}

Y{i,j},{k,l}

Y{i,j},{j,k}

= Y0,{i,j} 'i triangles (i, j, k) E G
= Y{i,l},{j,k} 'i 4 - cycles (i, j, k, L) E G

Y{i,l},{k,l} 'i 4 - cycles (i,j,k,L) if [ik] tJ. E(G)

(4.15)

(4.16)
(4.17)

Equalities (4.15) and (4.16) have already been proved in Section 4.3.1 to be
valid for matrices Y arising from a valid cut vector v. Condition (4.17) can be
justified as follows. If [ik] E E( G) then we would have the triangle-constraints:
Y{i,j},{j,k} = Y0,{i,k} and Y{i,l},{k,l} = Y0,{i,k}, thus Y{i,j},{j,k} = Y{i,l},{k,l}. Since
this edge, and therefore the constraints do not exist, we can add this condition
Y{i,j},{j,k} = Y{i,l},{k,l}.

Let matrix QL E Sm+l, m = IE(G)I, be defined as

1 n
-~L ..4~ 11

i=l

~Lij 'i[ij] E E(G),

where L = (Lij) is the Laplace matrix of the graph. Hence,

L: Lii Lidl Li2J2

1 Lidl 0 0
QL =- Li2J2 0 04

Note, that if Y represents a cut 15(8), then

{
-I

Y0,{ij} = Y{ij},0 = 1
if [ij] E 15(8)
otherwise.
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With QL defined in this way and if Y represents cut 6(5), (QL, Y) yields the
value of this cut:

(QL, Y) = Y0,0(Qd0,0 + 2 L Y0,{i,j}(Qd0,{i,j} =
[ij]EE(G)

1 n- 4(L lii + 2 L Y0,{i,j}lij) =
i=l [ij]EE(G)

1
- 4(2 L aij +

(ijJEE(G)

2 L 1.(-aij)+2 L (-l).(-aij))=
[ij]~8(S) [ij]E8(S)

w(6(5)).

Thus, the following SDP relaxation can be obtained:

(MCSPARSE) max (QL, Y)
s.t. diag(Y) = e

A(Y) = b
Y E Sm+1, y!::: 0

(4.18)

where m = IE(G)I and A(Y) = b denotes the set of triangle- and possibly the
4-cycle-equalities.

For any graph that contains a star (i.e. a vertex that is adjacent to each other
vertex), relaxation (MCSPARSE) has the important property, that the bound
is at least as good as the bound obtained by solving the basic SDP relaxation.
We prove this in the following

Theorem 4.3 Suppose there exists a vertex v E V(G) with deg(v) = n - 1.
Then the upper bound obtained from (MCSPARSE) is at least as good as the
(MCSDP)-bound.

Proof: Let Y be the optimal solution of relaxation (MCSPARSE) and v E
V(G) : deg(v) = n - 1. Define X E Sn, X = (Xij) to be the matrix

{

Y{i,v},{j,v} if i =1= v, j =1= V

Xij:= Y{i,v},0 if j = v, i =1= j ,
Y0,0 if i = j = v

for all i,j E V(G). I.e. X is the principal submatrix of Y consisting of the
rows/ columns indexed by {{1, v}, {2, v}, ... , {v - 1, v}, 0, {v, v + I}, ... , {v, n}}.
Since Y is a solution of (MCSPARSE), diag(Y) = e and hence, diag(X) = e.
And because of the positive semidefiniteness of Y, X is a positive semidefinite
matrix (due to Theorem A.1 and the fact that X is a principal submatrix of Y).
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Also, ~(L, X) = (QL, Y). Thus, X is feasible for (MCSDP) and the optimal
solution of (MCSDP) is at least (QL, Y). 0

This observation motivates us to add zero-cost edges to the given graph, in
order to obtain at least one star (if the graph does not already contain one).

When considering complete graphs, the relaxation considering the triangle-
equalities complies with the relaxation introduced by Anjos and Wolkowicz. But
if the graph is sparse, the matrix variable is of order m+ 1 in comparison to (;) + 1
and we have 1+ m + 3k linear equalities, where k is the number of triangles.

Also, considering all three types of constraints is a weaker model than the one
proposed by Lasserre, but contrary to the Lasserre relaxation it is manageable
for graphs on a few hundred vertices.

Solving this relaxation is discussed in Chapter 5 below.

4.4.2 Systematically Chosen Submatrices

Gvozdenovié and Laurent [44] constructed a hierarchy of semidefinite approxi-
mations for the chromatic number X(G) of a graph G (see Section 2.2). Similar
to the hierarchy of, for instance, Lasserre, also their second order bound 'ljJ(2) (G)
is not practically computable, since the dimension of the SDP is too large. Nev-
ertheless, they present computational results, where they use a variation of their
second order bound 'ljJ(2) (G). Instead of working with the matrix that is in-
dexed by {0} U V(Kn) U E(Kn), n = IV(G)I, they consider only the index set
{0}UV(Kn)U{{h,i}: i E V(Kn)}, hE V(Kn) and thus have acomputationally
practicable strengthening of 'ljJ(1) (G).

Using this idea, we can get tractable relaxations also for the Max-Cut problem.
Consider the relaxation of Anjos and Wolkowiczor Lasserre, but instead of using
the full matrix of dimension (;) + 1, we work with the matrix considering the
index set

k

{0}U{{Vi,j}: jE V(G)\{và},
i=l

Vi E V( G) 'Vi E {I, ... , k}. That means, we choose an integer k, 1 ::; k ::; n,
and include edges, such that the graph consists of k stars. The dimension of this
matrix is (n - 1) + (n - 2) + ... + (n - k) + 1 = kn - k(k + 1)/2 + 1.

It is easy to see, that as coefficient matrix in the objective function one can
choose a matrix having the Laplace matrix of the underlying graph as a principal
submatrix, namely in the rows/columns associated to one of the vertices with
degree n - 1 and the 0-row/ column.

Due to Theorem 4.3, this bound is then at least as good as the basic relaxation
(MCSDP), already for k = 1. Of course, the choice of k affects the quality of
the bound, but also the computational effort. Therefore, choosing the 'right' k
might be a crucial task.
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(MCSPARSE) with constraints
(4.15), best

(4.1) (4.15) (4.15),(4.16) (4.15),(4.17) (4.16),(4.17) cut
tri40-20 109.3 106.9 106.4 106.3 106.1 106
tri50-20 170.6 167.7 166.4 165.5 164.8 164
trLrnd40_20 304.8 289.9 286.0 286.0 286.0 286
trLrnd50_20 339.5 312.8 305.0 305.0 305.0 303
grid 10, 10 142.0 135.2 133.0 133.5 132.0 132
grid 15, 15 318.7 303.8 299.1 299.7 297.0 297
grid 20,20 574.0 546.1 540.1 541.1 539.0 539
grid 4,4,4 105.0 100.4 98.3 98.8 96.1 96
grid 6,6,4 233.2 225.2 221.3 222.1 216.0 216
grid 8,8,4 422.6 407.2 401.5 402.6 388.0 388
grid 8, 8, 5 520.9 503.8 497.8 498.5 479.2 479
spin5 125.3 124.2 123.8 123.7 110.8 108
spin6 211.8 210.2 220.0 210.4 188.7 182
gIs 144.6 141.6 152.5 140.0 135.1 126

Table 4.3: Comparing bounds for (MC) obtained by solving (MCSDP), (4.1),
and (MCSPARSE), including different types of constraints. Bold numbers in-
dicate, that we have proved optimality of the best found cut. (Note that the
weights on the edges of all graphs are integers.)

4.4.3 Numerical Results of (MCSPARSE)
In this section we present a few numerical results of solving relaxation (MCSPARSE)
and compare it with the solution of (MCSDP).

Table 4.3 lists the various bounds. The SDPs have been solved using SeDuMi
[122] or the Bundle Method (Section 5.1.1), depending on the size ofthe problem.

In the first column, the bound obtained by solving the basic relaxation (MCSDP)
is given. The second column shows the bound when solving the sparse model and
considering all the triangle-equalities. In column 3, additionally the 4-cycle con-
straints are included. Column 4 shows the results where the triangles and also
the constraints referring to (4.17) are incorporated. And in the fifth column all
constraints are taken into consideration. In the last column the best found cut is
given.

As can be seen, even with the smallest set of constraints, the sparse model
is always significantly better than the (MCSDP)-bound. Additional constraints
improved the bound and considering all equations proved that the best cut found
was optimal for most of the instances.

We annotate that using SeDuMi we compute the exact solution of the SDP,
whereas the Bundle Method returns an upper bound. For the spin6 and gIs
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graphs, the relaxation with constraints (4.15),(4.16) (which is intractable to be
solved by SeDuMi) was hard to solve for the Bundle Method. The progress was
not satisfactory and therefore we end up with a bound that is rather far from the
optimum of the SDP. Nevertheless, the Bundle Method for solving the relaxation
using constraints (4.15),(4.16),(4.17) shows a more satisfying behavior and the
bounds for graphs spin6 and gIs are improved significantly.



Chapter 5

Algorithms for Solving
Large-Scale Semidefinite
Programs

In previous chapters we investigated various Semidefinite Programs for solving or
approximating NP-hard problems arising from Combinatorial Optimization. This
chapter is dedicated to methods for solving these SDPs. Two prominent solution
methods have already been investigated in Chapter 1, namely the Interior-Point
Method and the Spectral Bundle Method. Although these two methods are
widely used, for various kinds of relaxations the dimension of the matrix variable
or the number of constraints is simply too large to be solved by one of these
algorithms.

This means that for various NP-hard problems promising Semidefinite Pro-
gramming relaxations exist, but due to the vast computational effort or the huge
memory requirements, the SDPs are not solvable.

Another way to tackle the problems of solving these SDPs, is using Lagrangian
duality and then solving the underlying problem by Bundle Methods, a tool for
optimizing non-differentiable functions (see Schramm and Zowe [118], Kiwiel [70],
Lemarechal [82]). We will focus on these methods in this chapter and will elab-
orate the details for solving the relaxations introduced in the previous chapter.
Furthermore, we will come back to the Spectral Bundle Method, introduced in
Section 1.4.2 and establish second order models to improve the performance.
Finally, the Boundary Point Method is introduced in this chapter. This new
algorithm uses an augmented Lagrangian algorithm applied to the dual SDP. At
the end of the chapter, a brief guidance for choosing the proper algorithm to solve
a given SDP is presented.

49
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5.1 The Bundle Method in Combinatorial Op-
timization

Barahona and Anbil [11]and Barahona and Ladanyi [12]use the volume algorithm
for solving LP relaxations arising from combinatorial optimization problems. This
algorithm allows solving LPs with a large number of constraints, because they
are not handled directly, but are incorporated by using the Lagrangian dual.
Bahiense, Maculan, and Sagastizabal [7])show that this algorithm can be viewed
as a simple variant of the Bundle Method.

Bundle Methods were first proposed by Lemarechal [82], and later on further
investigated by Kiwiel [69],Lemaréchal, Nemirovskii, and Nesterov [83]. A recent
survey can be found in the paper of Mäkelä [91]. A detailed presentation can be
found in the textbook of Hiriart-Urruty and Lemaréchal [60].

We want to apply this method to solve semidefinite programs with a large
number of constraints, for example those introduced in Sections 4.2 and 4.4.

The ingredients of the Bundle Method are basically the following:

• For a convex objective function 1 and a point 1E lRm we are able to
compute

- the objective value 1(1)
- a subgradient 9 E ô1(i), i.e. 9 satisfying

• This information is used to construct a cutting plane model j of I, mi-
norizing 1 on lRm

:

• Since the quality of minorant j is reasonable only in the vicinity of the
current iterate, displacement is penalized by considering

where u E lR is the penalty parameter.

The bundle (of size k) can be seen as the set of triples

We sketch the generic framework as follows.
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Algorithm 5.1 (Generic Bundle Algorithm)
Input.

Function fand 1E IRm.
Start.

Evaluate f (1) and obtain subgradient g.
Construct cutting plane model Î of f, minorizing f on IRm.

while some stopping condition is not satisfied
Solve min-yÎh) + ~II, - 1112to get 'test.
Evaluate f at ,test and obtain subgradient gtest.
if reasonable progress is made

Do a serious step,
update bundle, giving updated l

else
Do a null step,
update bundle, giving updated l

Check stopping condition.
end

In the two subsequent sections we want to elaborate the details for applying the
Bundle Method to solve SDP relaxations of the Max-Cut problem.

5.1.1 Solving (MCSPARSE) Using the Bundle Method

We want to solve the Max-Cut relaxation introduced in Section 4.4, namely

(MCSPARSE) max (QL, Y)
s.t. diag(Y) = e

A(Y) = b
Y E Sm+l, Y t: 0

where m = IE(G)I and A(Y) = b denotes the set of triangle- and possibly the
4-cycle-equalities. Let l be the number of these constraints, Le. b E IRl.

Recall that the set of positive semidefinite matrices with an all-ones diagonal
is the elliptope, denoted by £. Thus, (5.1) can equivalently be written as

(MCSPARSE) max (QL, Y)
s.t. A(Y) = b

Y E£.
(5.2)

The goal is to optimize the dual functional to (MCSPARSE). Let us introduce
the Lagrangian

£(Y, ,) := (QL, Y) + ,T(b - A(Y»

and the dual functional

(5.3)
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Evaluating f for some 'Yamounts to solving a problem of type (4.1), which can
be done easily for problem sizes of our interest by Interior-Point Methods (see
Section 1.4.1).

We call apair ("{,Y) a matching pair for f, if f("{) = £(Y, 'Y). A subgradient
is given by g("{) = b-A(Y). By applying Corollary A.12 we obtain the Lagrangian
dual

maxmin£(Y,'Y) = minmax£(Y,'Y) = minf("{).
YE£ ~. ~ YE£ ~

Following the ideas of the bundle concept, we build up a bundle of matrices
to construct the minorant

fappr("{) := max{£(Y, 'Y): Y E conv(Y1, ... , Yk)}.

Obviously, Y E conv(Y1, ... , Yk) can be expressed as Y = >'1Y1+ ... + ÀkYk,
eTÀ = l,À ~ O.

In each iteration we have some current iterate1' and we have to solve

(5.5)

which is convex quadratic in 'Y, and then we find Y (i.e. solving an SDP of
dimension n with n linear constraints), such that ("{,Y) is a matching pair.

Some notation. Let us collect Yi, ... ,Yk symbolically in y and for a vector
À E IRk define YÀ := L:7=1 ÀiYi. Furthermore we define A := {À E IRk: eTÀ =
1, À ~ a}. G E IR1xk is the collection of the k subgradients, i.e. G := (gl, ... , gk)
and F E IRk is the vector of the primal function values of the matrices in y, Le.
Fi:= (QL,Yi), 1~ i ~k.

With this notation we rewrite

f appr ("{ ) max bT'Y+ (QL - AT ("{), Y À) =
ÀEA
max (b - A(YÀ), 'Y)+ (QL, YÀ) =ÀEA
max'YTGÀ + FTÀ.
ÀEA

Therefore, (5.5), the problem to be solved, reads

min max 'YTGÀ + FT À + 2
1iI'Y - 1'112=~ ÀEA t

= max min 'YT GÀ + FT
À + 2

1
tiI'Y - l'11

2
.ÀEA ~

(5.6)

The inner problem in (5.6) is an unconstrained convex quadratic problem in 'Y
and therefore we can replace the minimization by insuring t~(.)= 0:

GÀ + !("{ - 1') = at
'Y = l' - tGÀ. (5.7)
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Substituting (5.7) in (5.6) we obtain

max,T GÀ + pT À + 2-1IT - 1'112=
ÀEA 2t

- max(1' - tGÀ)TGÀ + pTÀ + ~II1' - tGÀ - 1'112=
ÀEA 2t

- max1'TGÀ - tllGÀI12 + pTÀ + -2
tIIGÀII2 =

ÀEA

- max(GT1' + pfÀ - -2
tIIGÀII2. (5.8)

ÀEA

This convex quadratic problem over A can be solved efficiently by an Interior-
Point Method.

We can summarize now the algorithm to solve problem (5.1).

Algorithm 5.2 (Bundle Method to solve (MCSPARSE))
Input.

QL, A, b defining the problem.
Starting point l' E ]Rm (optional).
Parameter t, a, é.

Start.
i=l, done=lalse.
Evaluate 1 at 1':

solve max (QL - AT(1'), Y) s.t. Y E £ giving Y,
1 (1') = bTl'+ (QL - AT (1'), Y) ,
subgradient G = g(1') = b - A(Y).

repeat
Solve (5.8) and obtain À.

,test = l' - tGÀ.
lappr(,test) = (P + GT,test)TÀ.
ifi < itermax and 1(1') - lappr(,test) > é

Evaluate 1 at ,test:
solve max (QL - AT(,), Y) s.t. Y E £ giving Y'test,
Itest = bT,test + (QL - AT(,test), Y'test),
subgradient gtest = b - A(Y'test).

if Itest ::; alappr(,test) + (1 - a)I(1')
Serious step:
l' = ,test.
Increase t.

else
Null step:
Decrease t.

Purge bundle (*).
Append Y'test to y, gtest to G, (QL, Y'test) to P.
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i=i+l.
else

done=true.
until done.

ad (*): In order to keep the size of the bundle reasonably small, we purge it in
each iteration, meaning that we eliminate points Yi from y (and corresponding Fi
and the i-th column of G) whose contribution to the minorant Jappr is negligibly
small (i.e. 'xi < p' maxl:Sj:Sk'xj, for small P > 0).

Computational effort. Solving problem (5.8) can be done efficiently and also
the matrix and vector manipulations are of minor computational effort. The
most expensive task during one iteration is the function evaluation, i.e. solving
an SDP of dimension m with the m equality constraints fixing the main diagonal
to all ones. This SDP has to be solved exactly once in each iteration. Therefore,
one has to limit the number of iterations in order to get reasonable computation
times.

Quality of the solution obtained by the Bundle Method. Since the Bun-
dle Method returns only a "nearly" optimal solution, we want to evaluate the
quality of this solution. We run the following experiment. Instances, which are
solvable by Interior-Point Methods, as well as by the Bundle Method, are cho-
sen and solved using SeDuMi (Sturm [122]) and using our Bundle code, fixing
the number of iterations to 100. (In detail, we set the parameters as follows:
c = lQ-8, a = 0.2, estimate for t: t = 2(f(-Ystart) - best)j(GTG), where best is
some best known lower bound; if serious step: t = 1.0It, if null step: t = tj1.02.)
We summarize the results in Table 5.1. It turns out, that the bundle solution is
always less than 1% above the solution of the Interior-Point Method and therefore
it is definitely arguable to talk about a "nearly" optimal solution.

5.1.2 Solving (SDPMET) Using the Bundle Method

Fischer, Gruber, Rendl, and Sotirov [35] developed a dynamic version of the
Bundle Method to solve problem

(SDPMET) max (L, X)
s.t. A(X)::; b

XE£,
(5.9)

where A(X) ::; b denotes the set of triangle inequalities (see Section 4.2).
Contrary to solving (MCSPARSE), explained in Section 5.1.1, we have to

deal with inequalities, instead of equalities, which requires further examination.
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number of solution obtained by
lEI constraints SeDuMi bundle 100bdl-SeDu~i

rnd40_1 412 5102 241.8254 242.6178 0.33
rnd40_2 411 4933 247.0309 247.2647 0.09
rnd40_3 413 5136 243.7674 244.2194 0.19
grid2D_1 437 1152 123.5164 124.3625 0.69
grid2D_2 595 1784 170.7619 171.2725 0.30
grid2D_3 595 1784 151.0140 151.6911 0.45
planar_1 581 3708 356.6162 357.1655 0.15
planar_2 581 3708 112.4779 113.3540 0.78
rnd400_1 1193 3594 720.7212 721.4541 0.10
rnd400_2 1188 3583 719.1141 719.7037 0.08
planar_3 609 4156 364.5891 365.5026 0.25
planarA 605 4125 362.9813 363.6936 0.20
pianaL5 602 3954 361.0765 361.7070 0.17
spin2pm_1 446 1188 134.6885 135.3837 0.52
spin2pm_2 595 1784 148.7254 148.9564 0.16
spin2pm_3 595 1784 155.3412 155.8469 0.33
spin3pm_1 655 2024 195.0179 195.4285 0.21
spin3pm_2 793 2576 197.9891 198.2795 0.15
spin3pm_3 793 2576 198.8500 199.1416 0.15
spin6 216 2784 210.7897 211.1507 0.17

Table 5.1: Solution ofthe IPM vs. Bundle Method. The dimension oft he matrix
variable is lEI + 1, the number of constraints is given in column three. Columns
four and five give the solutions obtained by the two methods. The last column
indicates how far the bundle-solution is from the optimal solution (in %).
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We now have to solve the Lagrangian dual

min f(r),
'Y~O

with f defined in (5.4). Dualizing also the constraints "( 2:: 0, we obtain

max min "(TG>' + pT>. + ~II"( - 1112 - "(T'fl
ÀEA,7J~O 'Y 2t

(5.10)

where in addition to (5.6) we have 'fl, the Lagrange multipliers to the constraints
"( 2:: O. As before, the inner minimization can be replaced by setting the derivative
with respect to "( to zero yielding

"(=1- t('fl - G>').

Plugging this into (5.10) we obtain

(5.11)

(5.12)

This is a convex quadratic optimization problem in >.and 'fl. Solving it directly
is too time consuming and thus, we solve it approximately by alternately keeping
one set of variables constant. Keeping 'fl constant leads to a convex quadratic
problem similar to (5.8). Keeping>. fixed (say, >'), we obtain

The maximizer fi to this problem can be determined coordinate-wise:

(see for instance Helmberg, Kiwiei, and Rendl [57]). This process of keeping
one set of variables constant is iterated several times, and we end up with an
approximate solution of (5.12).

A further difference to the algorithm described in Section 5.1.1 is, that the
function f(r) to be minimized is not considered to be fixed, but changes in the
course of the algorithm. This is due to the fact, that we do not want to consider
all the triangle-inequalities at the same time, since the number of them is of order
O(n3

) (n is the dimension of X).
As initial function we solve

max{ (L,X): XE £}
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yielding an initial maximizer X*. We could now define Jb) by dualizing all the
constraints A(X) ::; b, but to maintain efficiency,we are interested only in those
constraints, which are likely to be active at the optimum. Therefore we look at
the violation r* := b-A(X*) and set rmin:= min{r;}. In the unlikely event that
rmin~ 0, X* is optimal for (SDPMET) and we are done. Otherwise rmin < 0
and we consider now only those constraints from A(X) ::; b which are 'badly'
violated by X* to define J.

Specifically, let 0 < Œ < 1 and set

We denote by AI the operator that contains only those matrices Aï, which cor-
respond to the triangle-inequalities in I. Similarly, we define bIo For notational
convenience we denote

Thus we start by minimizing fI using the Bundle Method described above. Af-
ter a preassigned number of bundle iterations, some 'YI and some X are obtained.
It is likely that 'YI is still far from the true minimizer of fI. Before continuing
with further iterations, we will update I, the index set ofthe triangle-inequalities
under consideration, by removing those which seem to be not important and
adding those, that promise progress. Thus, we need to answer the following two
questions:

• Which of the constraints in J should be kept?

• Are there additional constraints that should be added to I?

To answer the first question, we use 'YI' A large value 'Yi indicates that the
constraint i is binding and hence should not be removed. 'Yi = 0 indicates that
constraint i may be inactive, and therefore could be removed. In summary, we use
'YI to purge J by removing constraints i with a value 'Yi smaller than a prescribed
fraction of max( 'YI).

It is less obvious to decide which new constraints should be added to J. Ex-
periments showed that using a convex combination of X and the previous point
Xo1d to identify violated constraints gives the most satisfactory behaviour of the
algorithm.

Numerical results for using this method to solve (SDPMET) can be found
in [35, Table 4]. The algorithm reduces the gap of the basic SDP relaxation (4.1)
by 20% up to 90% for medium sized graphs (n ::; 512), and by at least 10% for
larger graphs (729 ::; n ::;2000). No other method so far is capable of producing
similar or even better bounds.
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5.2 The Spectral Bundle Method with Second
Order Information

What follows in this section is based on joint work with Armbruster, Overton
and Rendl [4]. We will use within this section definitions and formulas from
Section 1.3 (Eigenvalue Optimization) and Section 1.4.2 (The Spectral Bundle
Method).

Although the Spectral Bundle Method is capable of solving quite large-scaled
Semidefinite Programs, convergence is very slow. Within the method, the regu-
larized model (1.17)

min{Î(y) + ~IIY _yI12}
yElRk 2

is optimized. Since the choice of the parameter u is "somewhat of an art" (see
Remark 1.14), the idea is to replace uI by making partial use of second order
information and thus solve the following problem:

~ 1 ~
min{f(y) + -2(y -yfH(y -y)},
yElRk

where ÎI is a suitable approximation of the Hessian matrix of l With this choice
we hope to get a better performance of the algorithm.

To work out the details, what a "suitable approximation" of the Hessian is,
recall definition (1.16)

Here we define

Î(y) := max (C - AT(y), W) + bTy.
WEW

(5.13)

w:= {PVpT: trV = 1,V ES:},

with integer k being significantly smaller than n. Thus (1.18), the problem to be
solved in the course of the algorithm, becomes

and (1.19) reads
y = y + ~(A(PV pT) - b).

u
(5.15)

In order to derive a second order model, let us explore the derivatives of the
function in question. Let

be the spectral decomposition, where Q = (ql, q2, ... , qn) is an n x n matrix,
QTQ = I, À1 > À2 ~ ... ~ Àn, A = Diag(Àl" .. ,Àn).
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Assuming that the largest eigenvalue is simple, function Àmax(C- AT(y)) is
smooth and we obtain

8 ( T( T~Àmax C - A y)) = -ql Aql,
UYi

82
T ) -1 T8 8 Àmax(C - A (y) = 2qlAiQ2(ÀIln-I - D2) Q2 Ajql,

Yi yj

where Q2 = (q2, ... , qn), D2 = Diag(À2, ... ,Àn), see for instance Lancaster [75].
In general, the largest eigenvalue will have multiplicity k > 1. In this case,
Àmax(C- AT(y)) may not be written as a differentiable function in general.

Overton and Womersley [101] develop a second order model to minimize func-
tion Àmax(A(x)) with A(x) being a sufficiently smooth symmetric matrix. Our
approach is closely related to this even more general work.

Suppose the largest eigenvalue Àmax(C- AT(y)) has multiplicity k, i.e.

and partition Q in QI and Q2, such that

For finding a suitable approximation of the Hessian, we first need a matrix W =
PV pT. Recall from (1.10) that condition A(PV PT) = bmust hold for optimality.
Now QI plays the role of P in Section 1.3, and to avoid confusion let us use U
instead of V. Therefore, one way to find a proper U is to solve the problem

mm lib - A(Q1UQf)112
s.t. trU = 1

UtO
(5.18)

and then define W := Q1UQf. In this way we obtain a subgradient g(y) =
b - A(W) E 8f(y) of minimum norm. If A(W) = b, then 0 E 8f(y) holds and
hence, we have a certificate for optimality.

We use matrix U to define the following matrix H(U) = (hij),

hij = 2tr(A(QIUQf)AjQ2(ÀIln-k - D2)-lQf)

with D2 = Diag(Àk+l"'" Àn). Matrix H(U) captures the second order behaviour
of f(y) around the current point y with k being the multiplicity of the largest
eigenvalue of C-AT(y), see Helmberg and Oustry [53]or Overton and Womersley
[101]. In the case of a simple largest eigenvalue, H(U) indeed coincides with the
Hessian of f(y).

By using H(U) instead of uI in (5.15) we get

y = y + H(U)-l(A(W) - b). (5.19)
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Plugging this and H(U) into (5.14), the program to be solved, we obtain

maxW=QIVQ[ (C - AT(Y), W) + bTy - ~(y - yl H(U)(y - y) =
trV=l,V1::0

= maxW=QIVQ[ (C - AT(Y + H(U)-I(A(W) - b)), W) +
trV=l,V1::0

+bT(Y + H(Utl(A(W) - b)) +

+~(-H(U)-I(A(W) - b))TH(U)(-H(U)-I(A(W) - b)) =

= maxW=QIVQ[ (C - AT(y) + AT(H(U)-lb), W) +
trV=l,V1::0

_~(AT(H(U)-IA(W)), W) + bTy - ~bTH(U)-lb.

By defining

AT(H(U)-IA(W))
C - AT(y) + AT(H(U)-lb)

C3 '- bTy - ~bTH(U)-lb
2

we end up with the quadratic problem

max{ -(CI(W), W) + (C2, W) + C3: W = QI VQf, trY = 1, V tO}. (5.20)

We can now outline the algorithm as follows.

Algorithm 5.3 (Spectral Bundle Method with Second Order Information)
Input.

C, A, b defining the problem.
Starting point y E ~m (optional).
Parameter iter max and €.

Start.
Evaluate f at y:

Compute spectral decomposition C - AT(y) = QAQT,
f(y) = -Xl + bTy.

Estimate k, the multiplicity of -Xmax.

QI = (ql, ... , qk)
repeat

Solve (5.18) and obtain U.
Compute H(U).
Solve (5.20) and obtain W.
Compute direction d = H(U)-I(A(W) - b) (see (5.19)).
Do a line search and obtain t in y = y + td.
y f- Y + td.
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Evaluate f at the new point y and obtain new Q.
Estimate k, the multiplicity of Àmax.

QI = (Q11 ... ,Qk).
until iter max reached or IIdll < é.

Four items of this algorithm need further comments:

• Eigenvalue computation .

• Variation of H(U) in order to gain computational efficiency.

• Guessing the multiplicity of Àmax.

• Line search.

Eigenvalue computation. The eigenvalue computation can be done efficiently
by iterative methods, see Parlett [104]. There exist several implementations of
these methods, for instance, the Arnoldi method [5]can be found in the ARPACK
package [81].

Variation of H(U). Computing matrix H(U) and the inverse ofit requires sub-
stantial computational effort. A way to replace these operations by much cheaper
ones, is to use only the main diagonal of H(U) and ignore the off-diagonal en-
tries. In this way we still utilize second order information, but require only cheap
matrix operations and have therefore a computationally practical algorithm.

Multiplicity of Àmax. The multiplicity of the largest eigenvalue is usually not
known in advance and therefore we have to cleverly guess this value. We compute
the differences of the normalized eigenvalues

~À' '= _À_i-_À_i+_1 1< . < - 1
t • À

1
' - 'I, _ n .

If ~À1 is a value larger than, say 0.01, we can assume the eigenvalue À1 to be
simple. Otherwise, the multiplicity is k, if there is either a relatively to ~À1 large
gap ~Àk, or if the difference between À1 and Àk is considerably big, i.e.

with [) being for instance 0.05.
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Line search. Lancaster [75] shows that for any matrix C(t) whose elements
are functions of a scalar parameter t, the function À(C(t)) has continuous second
derivatives with respect to t. We can use this in the line search, by computing
the Taylor expansion up to order two of f(Y + td) and therefore, have a cheap
way of computing the approximate function value. I.e. if we know 'xmax(t) and
).max(t), we can compute

f(Y + td) - Àmax(C - AT(y + td)) + bT(y + td) =
- Àmax((C - AT(Y)) + tAT(d)) + bTy + t(bT d) ~

T ~ T~' T t2 ..~ Àmax(C - A (y)) + b y + t((Àmax(t)) + b d) + 2Àmax(t).

Note, that eigenvalue Àmax(C - AT(Y)) is already known in the current iteration.
To work out the details what 'xmax(t) and ).max(t) is, consider

with C and D being symmetric n x n matrices, and Ài denotes the i-th eigenvalue
of the matrix in question. We also assume that eigenvalues are sorted in non-
increasing order, i.e. À1 ~ ... ~ Àn. (Applied to our function, C corresponds to
C - AT(Y) and D to AT(d).)

We rewrite the relevant theorems, applied to our problem. Note, that the
theorems concerning existence of the eigenvalues (following from the theory of
implicit functions and the work of Goursat [40]) and differentiability can also be
found in the paper of Lancaster [75].

Theorem 5.4 Lancaster [75, Theorem g}
Assume that all eigenvalues Ài' 1 ::; i ::;n, of B(to) = C + toD, with spectral
decomposition B(to) = XAXT, XTX = XXT = I, are distinct. Then for an
eigenvalue Ài of B(to) we have

where

'xi(tO) = Pii,
n 2

).i (to) = 2L À. ~ À. '
j=l t J
Ni

p = XTDX.

(5.21)

(5.22)

(5.23)

Proof: First, by differentiating XT X = I we get j(T X + XT j( = 0 and define
the skew-symmetric matrix

'T T .S:=X X=-X X. (5.24)
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Now, we differentiate A = XT EX and by defining P = XT DX and (5.24) we
obtain

A(to) - XTEX+XTDX+XTEX=
XTDX +XTXXTEX +XTEXXTX =

- P+SA-AS.

For the diagonal elements we obtain

The off-diagonal elements have to be zero and thus,

)..ij(tO) = 0 ~ Pij + Sij).,j - ).,iSij = 0
Pij

~ Sij = ).,i _ ).,j for i =I- j.

And since S is skew-symmetric we have

Sii = O.

To compute .Ài(to) we differentiate P.

P = XTDX+XTDX=
_ XTXXTDX+XTDXXTX=

(XTX)(XTDX) - (XTDX)(XTX) =
- SP-PS.

And since P is symmetric and S skew-symmetric, we obtain

n n n

Pii = L SijPji - LPijSji = 2 L Sijpji'
j=l j=l j=l

Combining this with (5.26) and (5.27), we finally get

n 2
.. . ~ Pij
).,i ( to) = Pii = 2 ~ ).,. _ ).,..

;=1 t J
#i

(5.25)

(5.26)

(5.27)

o
Formula (5.22) will not hold in the presence of multiple eigenvalues. In this

case the following theorem applies.
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Theorem 5.5 Lancaster [75, Theorem 10]
Assume that the largest eigenvalue >-lof B(to) = C + toD has multiplicity k,
i.e. >-I = ... = >-k > >-k+l 2: ... 2: >-n. The spectral decomposition of B(to) is
given by B(to) = XAXT, XTX = XXT = I, with X = [Xk Xn-k], Xk E jRnxk,
Xn-k E jRnx(n-k). Furthermore, Xl DXk has eigenvalues 'l/Jl,' .. , 'l/Jkand denote
the spectral decomposition of this product by Y'lJyT, with W = Diag( 'l/Jl, ... ,'l/Jk)'
Then for 1~ i ~k it follows

).i(tO) = Pii,
n -2

'\i(to) = 2 L >-.~ >-. '
j=k+l t J

where

Using these two theorems, we can do several function evaluations during the
line search, without explicitly computing the largest eigenvalue.

5.3 A Boundary Point Method
The work presented in this section has been done jointly with Povh and Rendl
[110].

A further method for solving Semidefinite Programs apart from the one pre-
sented so far, has been proposed by Burer and Vandenbussche [27]. Theyapply
the Augmented Lagrangian technique to the primal SDP. Malick [92]uses a sim-
ilar approach for solving semidefinite least squares problems.

We will take up the idea of using the Augmented Lagrangian technique, but
will contrary to [27] apply it to the dual SDP, which is given as

(DSDP) mm (b, y)
S.t. AT(y) - C = Z

Y E jRm, Z E Sn, Z t: O.

Throughout this section, we make the assumption that the Slater condition (Def-
inition 1.6) is satisfied.

We introduce a Lagrange multiplier X and consider for fixed {J > a the aug-
mented Lagrangian
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(5.28)

that has to be minimized. The Augmented Lagrangian method applied to our
problem can be sketched as follows (see Bertsekas [22]).

Algorithm 5.6 (Augmented Lagrangian method to solve (DSDP»
Input.

C,A,b.
Initialization.

k = O.
Select O"k> 0, Xk t O.

while some stopping condition is not satisfied
Keep Xk fixed and
solve miny,zto LUk (y, Z; X) giving Yk, Zk.
Update X: Xk+1 = Xk + O"(Zk + C - AT(Yk».
Select O"k+l2: O"k.
Check the stopping condition and increase k.

return (Xk, Yk, Zk).

To simplify notation, we define

W(y) := AT(y) - C - .!X,
0"

and rewrite the augmented Lagrangian as
0" 1

Lu(Y,Z;X):= bTy+ "2IIZ - W(Y)112 - 20"11X1I2.

Thus, the minimization in Algorithm 5.6 reads

min bTy + ~IIZ - W(y)112.y,ZtO 2
(5.29)

This is a convex quadratic SDP and therefore tractable. However, when looking
at the optimality conditions of this SDP, one can find a cheap way of solving it
by iteratively keeping one set of variables fixed.

To derive the optimality conditions of this problem, let us introduce the La-
grange multiplier V for the constraint Z t 0:

L(y, Z; V) = bTy + ~IIZ - W(y)1I2 - (V, Z).

Computing the derivatives of L(y, Z; V) with respect to y and Z, we get:
1

"VyL(Y, Z; V) = b - O"A(Z - AT(y) + C + -X) =
0"

1
= O"A(AT(y» - O"A(Z + C + -X) + b,

0"
1

"VZL(y, Z; V) = O"(Z - AT(y) + C + -X) - V =
0"

O"(Z - W(y» - V,



66 CHAPTER 5. ALGORITHMS FOR SOLVING LARGE-SCALE SDPS

and by setting these derivatives equal to zero, we obtain the following KKT
conditions, necessary for optimality:

1
\ly£(Y, Z; V) = 0 => o-A(AT(y)) = aA(Z + C + -X) - b,

a
\l z£(y, Z; V) = 0 => V = a(Z - W(y)), (5.30)

V t 0, Z t 0, V Z = o.
Since the problem is convex and the Slater condition holds, these conditions are
also sufficient for optimality.

We observe that keeping y (and X) constant, Z is given by the projection onto
the cone of positive semidefinite matrices and thus, Z must satisfy the projection
condition

(5.31)

It is well known, that W(y)+ can be computed via the eigenvalue decomposition
of W(y), see for instance Higham [58]. This works as follows. Let W(y) = P ApT,
pT P = I, A = Diag(,\), and partition P and A according to its non-negative
and negative eigenvalues: A = Diag(A+, A_), P = (P+ P_) with Al ~ 0, A2 < o.
Therefore,

W(y) = P+A+PJ. + P_A_P!. = W(y)+ + W(y)_.

On the other hand, keeping Z (and X) constant, the minimization prob-
lem (5.29) is unconstrained and y can be computed by solving the linear system

1
aA(AT(y)) = aA(Z + C + -X) - b.

a
(5.32)

Furthermore, from (5.30) we get V = a(Z - W(y)) = a(W(y)+ - W(y)) =
-aW(y)_. Thus, we can reformulate conditions (5.30) as

1 1
A(AT(y)) = A(Z + C + -X) - -b,

a a
Z = W(y)+,

V = -aW(y)_.

Keeping one set of the variables (y or Z) constant leads to problems that are
easy to solve. Thus, we carry out minimization (5.29) by iteratively alternating
between solving (5.32) and computing Z by projection (5.31).

The minimization is then followed by the update on X (see Algorithm 5.6),
which can with (5.28) and (5.31) be simplified to

Xnew - X+a(Z+C-AT(y))=

= -a(W(y) - W(y)+) =
- -aW(y)_.
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The Lagrange multiplier V is therefore indeed identical with the primal matrix
X.

Note, that throughout the algorithm, the conditions X ~ 0, Z ~ 0 and
ZX = 0 hold. Therefore, we call this algorithm a boundary point method, as
both, Z and X, are on the boundary of the cone of semidefinite matrices. Once
we have reached feasibility regarding the primal and dual linear equations, we
have an optimal solution. Thus, primal and dual feasibility will serve as the
stopping criterion in the algorithm.

Summarizing, we can now state the Boundary Point Method as the following

Algorithm 5.7 (Boundary Point Method)
Input.

C,A,b.
Initialization.

k = O.
Select a> 0, E > 0, {Ed ~ o.
Xk = 0, Zk = o.

repeat
repeat

solve A(AT(y)) = A(Zk + C + lXk) - lb giving Yk.
T 1 a aW(Yk) = A (Yk) - C - -;;Xk.

Zk = W(Yk)+.
Vk = -aW(Yk)_.
Dinner = iIA(Vk) - bll.

until Dinner:::; aEk.

Xk+l = Vk.

Douter = IIZk - AT(Yk) + Cil.
k=k+1.

until Douter :::;E.

The highest computational costs arise in computing the spectral decomposition
of matrix W(y) and in solving the system of linear equations (5.32). Contrary
to Interior-Point Methods where the system matrix changes in each iteration, in
the Boundary Point Method the matrix arising from A(AT(.)) remains the same
throughout the algorithm. By computing for instance the QR-decomposition
only once, at the beginning of the iterations, one can obtain Yk by performing
backsolves. Moreover, for some problems the system-matrix of (5.32) is simply
a diagonal matrix and therefore the computation times for solving the equations
are negligibly small.

For the theoretical convergence results the reader is referred to Povh et al.
[110]. Therein numerical results of computing the 'l9-number of a graph are also
given. These results show that the Boundary Point Method works very well on
these instances. Comparison to the most efficient codes currently available, which
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problem n m rJ [73] [26] [124] our method
theta62 300 13389 29.6412515 96 344 200 50
theta82 400 23871 34.3668929 457 695 635 87
theta83 400 39861 20.3018905 1820 852 900 70
theta102 500 37466 38.3905463 1299 1231 1300 143
theta103 500 62515 22.5285698 2317 1960 2000 110
theta104 500 87244 13.3361402 11953 2105 1440 124
theta123 600 90019 24.6686519 10538 2819 3000 205
theta162 800 127599 37.0097358 13197 6004 12000 570

Table 5.2: Comparing the Boundary Point Method with the methods presented
in [73, 26, 124] on some instances of the TOR collection. Computation times are
given in seconds.

are those of Kocvara and Stingl [73], Burer and Monteiro [26] and Toh [124], show
that we compute the rJ-number often ten times faster than other methods (see
Table 5.2). Also, we are able to solve instances that are too big to be solved by
these other algorithms. Note, that the timings in columns labeled [73] and [26]
are obtained on machines, that are significantly faster than ours, whereas our
machine is at most twice as fast as the machine used to compute the results in
column [124].

We also tried to apply this method for solving SDP relaxations of Max-Cut, for
instance (MCSPARSE). The practical behavior of the algorithm for these in-
stances remained below our expectations. Contrary to computing the rJ-number,
approaching the optimum is rather laborious and there is no advantage in using
the Boundary Point method. The reason for this as well as tricks to work around
this is subject of ongoing work and will be reported in the paper by Malick, Povh,
Rendl, and Wiegele [93]. Furthermore, connections to proximal-point methods
and details regarding convergence analysis will be presented therein.

5.4 A Recipe for Choosing the Proper Solution
Method

In Chapter 1 and in the present chapter we introduced several algorithms for
solving Semidefinite Programs. In order to choose the best suitable method, one
can check in the following order, which method applies best to the SDP to be
solved.

1. Use an Interior-Point Algorithm to solve your SDP (Section 1.4.1).

This will give you the exact solution, as long as n ::;1000 and m ::; 7000.
If m gets larger, you will run out of memory.
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2. If the matrix formed by A(AT(.)) is sparse (maybe even diagonal), try using
the Boundary Point Method (Section 5.3).

3. Dualize some of the constraints and use the Bundle Method (Section 5.1).

You will obtain a "nearly" optimal and "nearly" feasible solution. If the
dimension of your problem is n with n :::;2000 the computation time should
be reasonable. For larger n this method is not advisable, because an SDP
of dimension n, and the constraints that have not been dualized, has to be
solved several times during the algorithm by an Interior-Point Code.

4. Dualize all the constraints, meaning you use the Spectral Bundle Method
(Section 1.4.2).

Computations are possible even for a very large number of constraints, but
convergence may be rather slow.

5. Use the Spectral Bundle Method with second order information (Section 5.2).

Due to the Spectral Bundle Method you can manage large-scale problems,
and the second order information will improve the convergence behaviour.
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(6.1)

Chapter 6

Biq Mac - Binary Quadratic and
Max-Cut Solver

This chapter is concerned with an exact solution method for the Max-Cut prob-
lem, developed jointly with Rendl and Rinaldi [115]. The remarkable bounds
obtained by using the Bundle Method for solving (SDPMET) motivated us to
use this method within a Branch & Bound framework. We call the outcome of
this work Biq Mac Solver - Binary Quadratic and Max-Cut solver.

In this chapter we explain the generic Branch & Bound algorithm. We discuss
some branching rules and address implementation issues. In the last section
numerical results are presented.

Recall the notation from Section 3.1 where we stated the Max-Cut problem
as

(MC) max xT Lx
s.t. xE {::I::1}n,

where L is the Laplace matrix of the underlying graph and x represents a cut
vector.

6.1 A Branch & Bound Framework for (MC)
Even though the Branch & Bound (B&B) idea is rather simple and can be found
in virtually any textbook on enumerative methods for NP-hard problems, we
summarize the key features of this procedure in the context of our problem.

Given an instance of (MC) through the matrix L, we need the following three
subroutines to define the B&B process.

1. Upper Bound. The bounding routine

Zub = upper-bound(L)

determines an upper bound Zub on the optimal value ZMC of (MC) for cost
matrix L.

71
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2. Heuristic. We also need to be able to produce some (good) feasible solu-
tion XI with value zl = xJ Lx I (hopefully) close to ZMC.

xI = feasible-solution(L)

3. Branching Information. Finally we need a procedure that tells us how
to subdivide the set of feasible solutions. We follow a very simple approach
and subdivide by selecting two vertices i and j and consider the two sub
problems

Xi~j := {x E {::f:1}n: Xi - Xj = O},

Xi-fj := {x E {::f:1}n: Xi + Xj = O}.

In the first case, i and j are in the same partition block, in the second case
they are in separate blocks.

It is well known [106]that optimizing over both sets can be done by solving
Max-Cut on graphs of size n - 1. The two vertices that are specified to
be in the same subset or not are merged into one new vertex and thus, the
dimension is reduced by one. For the case i ,.....,j, all solutions satisfy XvXi =
XvXj for all v E V (C), and for the case i -f j, the relation XvXi = -XvXj for
all v E V(C) must hold. Therefore one can eliminate variable Xj and both
subproblems can be represented through their respective Laplace matrices
Li~j and Li-fj. To get an idea of the construction of these matrices, we
exemplify the case where vertices n -1 and n go into the same set, i.e. edge
[n - 1,n] is not cut. Then we have L(n-l)~n = (lij) with

{

lij

l-.. - li,n-l + li,n
tJ - l ln-l,j + n,j

ln-1on-l + 2ln-1on + lnon

for 1 ::; i < n - 1, 1 ::; j < n - 1
for 1 ::; i < n - 1, j = n - 1
for i = n - 1, 1 ::; j < n - 1
for i = j = n - 1.

Using these three ingredients, we can summarize a generic B&B approach for
(MC) as follows.

Algorithm 6.1 (Generic Branch & Bound Algorithm for (MC»
Input.

LE Sn.
Initialization.

Zub = 00 (upper bound)
Xbk = (1, ... , l)T (best known (bk) cut vector)
Zbk = xfkLxbk (best known solution value)
Q = {(zub,L)} (problem list)

while Q =1= 0
Remove problem (ZI, L') (with z' maximal) from Q. (*)
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Determine new upper bound and feasible solution for L':
Zub = upper-bound(L')
x = feasible-solution(L'); Z = xT Lx.

if Z > Zbk

Update (Zbk, Xbk) and
remove all problems (ZII, L") from Q with Z" < Zbk.

if Zbk < Zub

Determine Li~j, Lifj from branching pair {i,j}.
Add {(z, Li~j), (z, Lifj)} to Q.

return Xbk.
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At the beginning of each iteration one has to make the choice, from which node
to branch next. One possibility is a depth-first search, where always the deepest
node is chosen. This strategy has the advantage that the storage demand is very
small since less problems have to be memorized. However, we use the strategy of
selecting the node with the largest upper bound, see (*). In this way, the upper
bound of the overall problem is monotonically decreasing and therefore, when
stopping after a certain number of nodes, the bound is expected to be tighter
than in the case of using a depth-first search.

Finding good feasible solutions can be done routinely in our case, as any vector
x E {:l::l}n is feasible. We use the Goemans-Williamson hyperplane rounding
technique, in conjunction with some simple ideas for improving this result. The
procedure is described in detail in Section 3.4.

The relaxation (SDPMET) solved by the Bundle Method, as explained in
Section 5.1.2, serves as bounding routine.

And the branching strategy to determine a pair (i, j) of vertices to be split or
merged will be desribed in detail in Section 6.2 below.

6.2 Branching Rules
At each node of the Branch & Bound tree, we branch by fixing the relation
between two vertices ('branching on an edge'). Either the edge will be cut, or
not.

Helmberg and Rendl [54] discuss carefully five different branching strategies,
called Rl - R5. Rl and R2 follow the strategy, to branch first on a pair of vertices
{i,j}, where the decision whether edge [ij] is cut at the optimum or not seems
to be obvious. Rules R3 and R4 go for the opposite policy, namely branching
first, where the decision seems to be hard. In rule R5, information offered by the
triangle inequalities is used.

According to the experiments in [54], we decide to use R2 and R3, and fur-
thermore a variation of R3 in our algorithm. Moreover, we experiment with two
strong branching rules. In detail the branching rules work as follows.
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6.2.1 Easy First

A first idea is to choose two vertices for branching, where the decision whether
these two vertices should be in the same set of the partition or not seems to be
obvious. We choose i and j such that their rows are 'closest' to a {:i:l} vector,
i.e. they minimize L:~=1(1- IXik1)2. We mayassume, that for these two very
well articulated nodes, the value IXij I is also very large. Setting Xij opposite
to its current sign should lead to a sharp drop of the optimal solution in the
corresponding sub tree. Hoping that the bound also drops as fast, we will be
able to cut off this sub tree quickly. We illustrate the B&B tree created by this
rule in Figure 6.1. The picture nicely shows that we obtain rather a chain than
a balanced tree. The decision opposite to Xij can, for this instance, always be
fathomed without further branching. According to [54]we call this rule R2.

6.2.2 Difficult First

Rule R3 in [54] fixes the hard decisions first. We branch by fixing the relation
between vertices i and j with minimum IXijl. This means, we fix the most difficult
decisions and hope that the quality of the bound gets better fast. The effect is,
that we obtain a very balanced B&B tree. A picture of the tree obtained by this
rule is given in Figure 6.2. (The input graph is the same as in Figure 6.1.)

6.2.3 A Variant of R3
As a variation of R3, we can instead of considering the complete graph, only look
at edges with non-zero weights. However, this rule did not show a significantly
different behavior than rule R3.

6.2.4 Strong Branching
To make use of the dual information, available from the bundle algorithm, we
consider also 2 branching rules, where we forecast on some potential branching
decisions. In this section we explain, how to make use of this information to
decide a priori, that a node can be omitted from the Branch & Bound tree.

Join node i and node j. If we consider the decision to join nodes i and j (i.e.
Xij = Xji = 1), we would have to solve the SDP

Zi~j = max{trLX : diag(X) = e, A(X) :::;b, Xij + Xji = 2, X ta} (6.2)

which has the Lagrangian

.c(X; "l, u) = (L, X) + ("(,b - A(X)) + (u, (Eij + Eji, X) - 2).
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Figure 6.1: The B&B tree obtained by solving graph GO.5, n = 80, using branch-
ing rule R2. The labels of the nodes correspond to the order, in which the nodes
have been generated.
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Figure 6.2: The B&B tree obtained by solving graph GO.5, n = 80, using branch-
ing rule R3. The labels of the nodes correspond to the order, in which the nodes
have been generated.

Thus, the dual functional reads

max L:(X;" u) =
diag(X)=e,X~O

max (L + u(Eij + Eji) - ATh), X) + bT,_ 2u,
diag(X)=e,X~O

where Eij is the matrix having one in the (i, j)-entry and zero elsewhere. Clearly,
the following inequalities always hold:

for any u E 1R,1';:::0,1' E IRm. Therefore, we choose a constant u > 0 to force the
constraint Xij + Xji = 2 to hold and call the bundle routine with the objective
function (L+u(Eij+Eji), X) and the dual information available from the previous
calculation of the bound. In this way we obtain a valid upper bound on the sub
problem.

Let Zbk be the best known cut value. If the condition

holds, the decision i rv j can be omitted from the Branch & Bound tree.

Separate node i and node j. Similarly, we can consider the case, where we
want to cut edge [ij], i.e. Xifj.
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How to use strong branching. We consider two different variants of incor-
porating strong branching.

First R2J then R3. First, find the 6 'best' potential branching edges according
to rule R2. These are edges, where we expect to be able to cut off one of the
sub trees quickly. We do a quick forecast on each of these branching decisions
and hope to be able to fathom this node (before we actually add it), i.e. we only
have to add one node to the branching tree. If we do not succeed in finding such
an edge, we do a forecast on the 6 'best' branching edges according to rule R3
and branch then on the edge, where the decrease of the bound in both children
is maximal.

R3 only. Do a forecast on the 6 'best' branching edges of rule R3. Branch on
the edge, where the largest decrease of the bound in both children is expected.

Performance. It was disappointing to see, that strong branching does not
seem to be worth the effort. There was only a slight decrease in the number
of nodes, compared to the vast increase of computation time. Contrary to LP,
where sensitivity analysis is at hand, for Semidefinite Programming no similar
results exist and the dual information available at the end of the bundle iterations
cannot be utilized. If we actually add a node to the B&B tree, that could be
omitted by strong branching, the effect is, that after very little bundle iterations
the node can be fathomed anyway.

6.3 Implementation of the Biq Mac Solver
We implemented the Branch & Bound Algorithm described above in C. For op-
erations arising from linear algebra we use ATLAS (Automatically Tuned Linear
Algebra Software), which is an open source implementation of BLAS (Basic Lin-
ear Algebra Subprograms) and parts of LAPACK (Linear Algebra PACKage).

To solve the SDP, which has to be done several times during the algorithm, we
implemented a predictor-corrector version of an Interior-Point Algorithm using
the HKM-direction (see Section 1.4.1).

We did not cover yet, when to stop the bundle algorithm. Although there
is a very distinct tailing-off effect, it is not advisable to let the algorithm run,
until we have reached tailing-off. The reason is, that if it is obvious, that the
bounding procedure will not succeed to declare the best known feasible solution
of this node to be optimal, we do not want to waste time by calculating the
bound tightly. Therefore, after some bundle iterations we make a rough forecast
to decide whether it is worth doing more bundle iterations or if the gap, i.e. the
difference between the bound and the best known feasible solution, cannot be
closed anyway.

Another issue is, after how many bundle-iterations we should purge the con-
straints and add newly violated ones. Let us call the bundle-iterations done
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between the process of purging/separating 'inner iterations' and one round of do-
ing the inner iterations followed by purging and separating constraints an 'outer
iteration'. At the beginning of the bundle algorithm the number of inner iter-
ations should be small, say three iterations. Then this number is increased in
each outer iteration until a limit of, say ten inner iterations, is reached. This is
motivated by the fact, that in the beginning it will take a while until we have
found the 'right' set of triangle-inequalities and we do not waste time by trying
hard to push the bound down if the current set of triangle-inequalities does not
allow much progress.

Experiments show that it is definitely advisable to apply these dynamic strate-
gies. Using the Bundle Method as described in Section 5.1.2 in a B&B framework
without these features leads to significantly longer computation times. By apply-
ing the dynamic strategies, we saved up to 30% of computation time compared
to an algorithm using a static number of inner and outer iterations.

We can now summarize the algorithm, performed at each node of the B&B
tree as Algorithm 6.2, with subroutines described in Algorithms 6.3 and 6.4 below.

Algorithm 6.2 (Biq Mac, algorithm performed at each node of the B&B tree)
Subroutines 'function evaluation' and 'separation' can be found in Algorithms 6.3
and 6.4 below.

Input.
Laplace matrix L.
Parameter:

itinneTl itouter, itextra, maxitinner, minitouter
gaprelax = 1 if all weights are integers} otherwise gaprelax = O.
branchingule} c.

Start.
i=l} done=false, I= 0, l' = D.
j, g, X f- function evaluation with L, 1', I.
G = g,F = (L,X),X = X.
I f- separation with X.
Xbk, Zbk f- rounding heuristic, see Section 3.4.

repeat
j, g, X f- function evaluation with L, 1', I.
add this information to bundle F, G, X.
j=l.
while j < itinner and f + c ~ Zbk + gaprelax

Solve (5.12) and obtain À, 'Tl.
"(test = l' - t('Tl- GÀ), see (5.11)
ftest, gtest, Xtest f- function evaluation f at "(test.
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if ftest < f
Serious step:
..y = Itest.
t = 1.0It.

else
Null step:
t = t/1.02.

Append Xtest to X, gtest to G, (L,Xtest) to F.
j=j+1.

endwhile.
Purge bundle:

B = {i : Ii > 0.011') with l' = O::z:,11i)/m.
G = G(B), F = F(B), X = X(B).

J f- separation with .1X + .9Xold'
1= lU J.
if j + E < Zbk + gaprelax

j* gap closed *j
done=true.

else if i = minitouter
if (fold - j) . (itouter - minitouter) > Zbk + gaprelax

j* we will not be able to close the gap *j
done=true.

else if i = itouter
j* check whether some extra iterations could close the gap *j
if (fold - j) . itextra > Zbk + gaprelax

done=true.
else if i = itouter + itextra

j* maximum number of iterations reached *j
done=true.

i=i+1.
itinner = min {itinner + 1, maxitinner}.

until done.
Xbk, Zbk f- rounding heuristic, see Section 3.4.
obtain branching edge [ij] according to the specified branchingrule.
return [ij] and Xbk, Zbk, Zub = j.
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Algorithm 6.3 (Biq Mac, subroutine function evaluation)
Input: Laplace matrix L, dual variables l, index set l.
solve max (L - Afb), X) s.t. X E £ giving X,
f = fb) = bTI + (L - Afb),X),
g = gb) = b - A1(X).
return function value f, subgradient g, and matrix X such that b,X) is a matching pair.
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Algorithm 6.4 (Biq Mac, subroutine separation)
Input.

Matrix X.
Parameter heapsize, maxgentri, mandatorYtri

Create a heap of size 'heapsize' with those triangle-inequalities violated
most by X.
I f- indices of the mandatorYtr most violated ones.
Choose randomly (max gen - mandatorYtr) triangle-inequalities from
the remaining heap and add it to I.
return indices I of new constraints.

In Figure 6.3 we present a typical call-graph of solving some instance. main
is the program that administrates the B&B tree and calls the bounding proce-
dure. In bound the bundle-routine is called and the branching-edge is determined.
bdLlIlain calls the heuristic, starts the bundle-iterations and also separation and
purging of the triangles are done in this program. Note, that the heuristic-routine
as well as the separation-routine takes so little time (less than 2% each), that
they are not displayed in this call-graph. The 'inner' bundle iterations are done
in bdLlllC2, here also the routine doing the function evaluation fct_eval and
the routine lam_eta for solving the À-1]-problem(5.12) are invoked. Solving the
SDP in order to evaluate the function is done in mc_psdpk. The other routines in
the graph are doing linear algebra operations, like matrix multiplications, matrix
inversion, cholesky factorization, etc.

Since the programs of our interest are only the top-level routines, we zoom
in Figure 6.4 into the top 11 sub-programs. We see that program mcpsdpk,
which solves the SDP, uses up 88% of the overall time, whereas time for solving
the À-1]-problem,solving the heuristic, and doing separation is negligible. This
means, the best way of saving computation time, is trying to keep the number of
function evaluations small. For this reason we choose the number of inner and
outer iterations dynamically, as described above.

6.4 The Biq Mac Library
We have collected a wide variety of test problems of both, (MC) and (QP).
All the data sets together with a description can be downloaded from http: / /
www.math.uni-klu.ac.at/or/Software. The instances are taken from various
sources, here we provide the characteristics of the data sets and references to
papers where the problems are introduced and (possibly) solved. Throughout this
section n is the dimension of the graph (for (MC) instances) or the dimension
of matrix Q (for (QP) instances). d is the density of the graph or of matrix Q,
respectively.

http://www.math.uni-klu.ac.at/or/Software.
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Figure 6.3: A typical call graph. Note, that the subroutine that does the separa-
tion of the triangle inequalities consumes so little time, that it does not appear
in this graph.
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--
Figure 6.4: Call graph, zoomed in to the top 11 subroutines. Program mc_psdpk
is solving the SDP, lam_eta solves (5.12).



6.4. THE BIQ MAC LIBRARY

6.4.1 Max-Cut
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rudy-generated instances

The first group of instances is suggested by Helmberg and Rendl [54] and consists
of random graphs (of specified edge density) with various types of random edge
weights. All graphs were generated by the graph generator rudy of Rinaldi [116].
We generated ten instances each of the following types of graphs:

• GO.5
unweighted graphs with edge probability 1/2, n = 80 and n = 100.

• G-1/O/1
weighted (complete) graphs with edge weights chosen uniformly from {-l,a, I}
and density d = 0.1 and d = 0.99, n = 100.

• G[-lO,lO]
Graphs with integer edge weights chosen from [-10,10] and density d = 0.5
and d = 0.9, n = 100.

• G[O,lOl
Graphs with integer edge weights chosen from [-la, la] and density d = 0.5
and d = 0.9, n = 100.

Applications in physics: Ising instances

We also consider a set of test-problems from F. Liers [personal communication,
Dec. 2005] deduced from physical applications. There are two kind of instances:

• two- and three-dimensional grid graphs, with Gaussian-distributed weights
(zero mean and variance one). We select graphs of size 10 x la, 15 x 15,
20 x 20, 5 x 5 x 5, 6 x 6 x 6 and 7 x 7 x 7.

• dense Ising instances (one dimensional Ising chain), i.e. complete graphs
with a certain structure. These instances are obtained in the following
way: all nodes lie evenly distributed on a cycle. The weights of the edges
depend on the Euclidean distance between two nodes and a parameter (7,

such that the following proportion holds:

€ij
Ci' rv -

J rf!.
tJ

where €ij is chosen according to a Gaussian distribution with zero mean
and variance one and rij is the Euclidean distance between nodes i and j.
The graphs we have chosen are of size n E {lOa, 150,200,250, 300}.
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6.4.2 Instances of (QP)
Pardalos and Rodgers [102] have proposed a test problem generator for uncon-
strained quadratic binary programming. Their routine generates a symmetric
integer matrix Q to define the objective function for (QP), with the linear term
c represented by the main diagonal of Q, and has several parameters to control
the characteristics of the problem, namely:

n the number of variables
d the density, i.e. the probability that a nonzero will occur for

any off-diagonal coefficient (%)
c the lower bound of the diagonal coefficients (qii)
c+ the upper bound of the diagonal coefficients (qii)
q the lower bound of the off-diagonal coefficients (%)
q+ the upper bound of the off-diagonal coefficients (%)
s a seed to initialize the random number generator

qii rv discrete uniform (c-, c+), i = 1, ... , n
% = %i rv discrete uniform (q-, q+), 1 :::;i < j :::;n.

Several test problems generated this way are provided in the OR-library main-
tained by Beasley [16], [17]. We have chosen all the problems of sizes of our inter-
est, which are the data sets bqpgka, due to Glover, Kochenberger, and Alidaee
[37] and bqp100 and bqp250, see Beasley [18].

Furthermore, Billionnet and Elloumi [23]extended the sets c and e of bqpgka.
We call these instances bqpbe.

In contrast to the bqpgka data that have varying characteristics, the data sets
beasley and bqpbe consist of 10 instances for each specification.

The characteristics are as follows:

• bqpgka

n d c- c+ q- q+
bqpgka, set a 30, ... ,100 0.0625, ... ,0.5 -100 100 -100 100
bqpgka, set b 20, ... ,120 1.0 0 63 -100 0
bqpgka, set c 40, ... ,100 0.1, ... ,0.8 -100 100 -50 50
bqpgka, set d 100 0.1, ... ,1.0 -75 75 -50 50
bqpgka, set e 200 0.1, ... ,0.5 -100 100 -50 50

• beasley

n d c- c+ q q+
beasley100 100 0.1 -100 100 -100 100
beasley250 250 0.1 -100 100 -100 100

• bqpbe
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n d c- c+ q- q+
bqpbel00.l 100 1.0 -100 100 -50 50
bqpbe120.3 120 0.3 -100 100 -50 50
bqpbe120.8 120 0.8 -100 100 -50 50
bqpbe150.3 150 0.3 -100 100 -50 50
bqpbe150.8 150 0.8 -100 100 -50 50
bqpbe200.3 200 0.3 -100 100 -50 50
bqpbe200.8 200 0.8 -100 100 -50 50
bqpbe250.1 250 0.1 -100 100 -50 50

6.5 Numerical Results
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In this section we want to compare the Biq Mac solver with other exact solution
methods. Some tables to briefly summarize the results are given within this
section, tables with the detailed results can be found in Appendix C. If not
stated otherwise, all computations were done on a Pentium IV, 3.6 GHz and
2 GB RAM with operating system Linux.

Comparison with other SDP based algorithms. First, we want to exem-
plify the comparison between Biq Mac and the B&B algorithm that uses the
basic SDP relaxation, as developed by Poljak and Rendl [106] (Section 3.3.2).
Figure 6.5 shows the decrease of the bound over time of Biq Mac and of the
algorithm using the method of [106]. This small example, an unweighted random
graph of size n = 60 and edge-probability 0.5, has the optimal (MC) value 536
and since the edge-weights are integers we can stop the algorithm as soon as
the upper bound is strictly smaller than 537. Biq Mac used 20 seconds to solve
this problem, whereas using only the basic SDP relaxation in a B&B framework
(as done in [106]) results in 453.16 seconds computation time (8483 nodes in the
B&B tree). Although the initial gap of the [106]-B&B algorithm is rather small,
there is no further significant progress in all the subsequent nodes of the B&B
tree. Therefore, albeit the bounding procedure is very cheap, the overall time of
the algorithm is significantly larger than the time that Biq Mac uses. This nicely
shows the great impact of including triangle-inequalities in the SDP relaxation.

Like Biq Mac, the algorithm of Helmberg and Rendl [54]tries to use (SDPMET)
as bounding routine (see Section 4.2). Still, this method performs worse than Biq
Mac. To illustrate this we plot in Figure 6.6 the decrease of the bound over time
within the root-node of the B&B tree for both approaches. We took a graph from
the Beasley collection (bqp250-6) with n = 250, see Section 6.4.2. The optimal
value ZMC = 43931 (bottom line in the table). We also computed ZSDPMET and
found that ZSDPMET :s: 44095 (dashed horizontalline). The topmost curve in the
figure shows the decrease of the upper bound during the progress of adding more
and more constraints and solving the resulting SDP by an Interior-Point Method.
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Figure 6.5: Solving an instance of GO.5, n = 60, with the B&B algorithm intro-
duced by Poljak and Rendl [106] (line above) and Biq Mac. Optimal solution of
Biq Mac after 20 seconds, [106] takes 453.16 seconds.
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Figure 6.6: Beasley graph with n = 250. The optimal value of Max-Cut is 43931,
ZSDPMET:::::: 44095.

The curve below inf Figure 6.6 shows the progress of the upper bound of Biq Mac.
This picture should be convincing enough, that the bounding routine used in Biq
Mac, i.e. the Bundle Method, is substantially more efficient in reaching ZSDPMET

and therefore, the overall B&B algorithm is superior to the method described in
[54].

These two examples illustrate the performance of Biq Mac compared to the
SDP based methods [106] and [54]. Since this is a generic behavior, these char-
acteristic pictures apply generally to any instance to be solved. Therefore we can
claim that our method is superior to the other SDP based B&B methods [106]
and [54] and we will skip comparing with these two methods in the subsequent
sections.

Comparison with solution methods other than SDP. Other methods
for which numerical results are available are LP based algorithms, the convex
quadratic approach of Billionnet and Elloumi [23], the second-order cone pro-
gramming algorithm of Muramatsu and Suzuki [97] and the method of Pardalos
and Rodgers [102]. Since the latter two perform already worse than [54], which
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min-time avg-time max-time mm avg max
n d solved h:min h:min h':min nodes

GO.5

100 0.5 10 5 50 3:44 65 610 2925
G-1/O/1

100 0.99 10 7 56 2:31 79 651 1811
G[-lO,lOj
100 0.5 10 9 38 1:13 97 435 815
100 0.9 10 5 57 3:12 51 679 2427
G[l,lOj
100 0.5 10 7 48 2:02 111 576 1465
100 0.9 10 12 40 1:26 155 464 1007

Table 6.1: Average Branch & Bound results for Max-Cut problems. Run times
on a Pentium IV, 3.6 GHz, 2GB RAM.

can be beaten by our code, we mayomit comparisons of these two methods with
Biq Mac. (See also Sections 3.3A and 3.3.5.)

LP base methods (Section 3.3.1) perform very well for sparse (MC) instances.
Therefore, in the subsequent section we will use these instances for comparison
of these LP based methods with Biq Mac.

Comparison with the work of Billionnet and Elloumi [23] (Section 3.3.3) will
be done in detail in the subsequent sections.

To the best of our knowledge, no other codes or papers presenting competitive
numerical results are available.

6.5.1 Numerical Results of (MC) Instances

rudy-generated instances

Table 6.1 lists the computation times (minimum, average and maximum) and
the number of nodes (minimum, average, maximum) of the resulting Branch &
Bound tree of the n = lOO-instances as described in Section 6.4.1. The branching
rule used for these kind of instances is R2.

The average computation times for all kind of instances are approximately
one hour. Nevertheless, instances mayalso be solved within some minutes, and
contrary, it could take more than three hours for some graphs to obtain a solution.

The results show that we outperform on these classes of instances all other
solution approaches known so far. The currently strongest results on these graphs
are due to Billionnet and Elloumi [23]. They are not able to solve instances
G-1/O/1 of size n = 100 at all. Also, they could solve only two instances out of
ten of GO.5, n = 100. The detailed results can be found in Tables o.1-CA.



6.5. NUMERICAL RESULTS 89

Problem [87] Biq Mac Problem [87] Biq Mac
number n time (sec) time (sec) number n time (sec) time (sec)
2 dimensional 3 dimensional
glO_5555 100 0.15 10.12 g5_5555 125 2.68 18.01
g10_6666 100 0.14 15.94 g5_6666 125 3.29 24.52
g10-7777 100 0.18 14.89 g5_7777 125 3.07 26.00
g15_5555 225 0.44 304.03 g6_5555 216 20.56 280.85
g15_6666 225 0.78 359.87 g6_6666 216 37.74 2025.74
g15-7777 225 0.67 346.89 g6-7777 216 27.30 277.95
g20_5555 400 1.70 6690.99 g7_5555 343 95.25 432.71
g20_6666 400 3.50 35205.95 g7_6666 343 131.34 550.12
g20-7777 400 2.61 8092.80 g7-7777 343 460.01 117782.75

Table 6.2: Test runs on torus graphs with Gaussian distribution. Branch & Cut
algorithm computed on an 1.8 GHz machine, Branch & Bound done on a Pentium
IV, 3.6 GHz. Time in seconds.

Applications in Physics: Ising instances

As explained in Section 6.4.1, there are two kind of Ising instances: toroidal grid
graphs and complete graphs.

Instances of the first kind can be solved efficiently by an LP-based Branch
& Cut algorithm (see Liers et al. [87]). The computation times of their and our
algorithm are reported in Table 6.2 (for further details see Table C.5). As can be
seen, on these sparse instances the LP-based method outperforms our algorithm.
However, we find a solution within a gap of 1% in reasonable time for all these
samples.

The run-time of the Branch-Cut & Price algorithm (Liers [86]) developed
for the second kind of problems depends stronglyon the parameter (}". For (}"
close to zero, we have a complete graph with Gaussian-distributed weights. But
for (}"chosen suitably large, some of the edges become 'unimportant' and the
pricing works very well for these graphs. In Table 6.3 the computation times of
[86] and our algorithm is given. (The detailed Biq Mac results can be found in
Table C.6.) For (}"= 3.0, roughly speaking we have the same computation times.
But for (}"= 2.5, the Branch-Cut & Price algorithm already takes more than 20
hours for instances of size n = 150, whereas our algorithm needs almost similar
computation times as in the (}"= 3.0 case.

For both kind of instances we used branching rule R3.
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Problem [86] Biq Mac Problem [86] Biq Mac
number n h:min:sec h:min:sec number n h:min:sec h:min:sec

(J = 3.0 (J = 2.5
100_5555 100 4:52 1:36 100_5555 100 18:22 1:32
100_6666 100 0:24 0:34 100_6666 100 6:27 1:06
1003777 100 7:31 0:48 1003777 100 10:08 0:47
150_5555 150 2:36:46 4:38 150_5555 150 21:28:39 4:25
150_6666 150 4:49:05 3:55 150_6666 150 23:35:11 5:39
1503777 150 3:48:41 6:06 1503777 150 31:40:07 9:19
200_5555 200 9:22:03 10:07 200_5555 200 - 10:05
200_6666 200 32:48:03 18:53 200_6666 200 - 17:55
2003777 200 8:53:26 22:42 2003777 200 - 21:38
25015555 250 21:17:07 1:46:29 250_5555 250 - 3:00:28
250_6666 250 7:42:25 15:49 250_6666 250 - 1:17:04

. 2503777 250 17:30:13 57:24 250_7777 250 - 1:10:50
300_5555 300 17:20:54 2:20:14 300_5555 300 - 6:43:47
300_6666 300 10:21:40 1:32:22 300_6666 300 - 9:04:38
3003777 300 18:33:49 3:12:13 3003777 300 - 13:00:10

Table 6.3: Test runs on Ising instances (complete graphs). Branch-Cut & Price
computed on a 1.8 GHz Machine, Branch & Bound on a 3.6 GHz PC. Times in
hours: minu tes:seconds.
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6.5.2 Numerical Results of (QP) Instances
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In this section we report the results for the instances derived from (QP). Best
known lower and upper bounds for bqpgka and beasley data are reported at the
pseudo-Boolean website maintained by Boros, Hammer, and Tavares [25]. Our
results can be found in Tables C.7-C.12, summarized we obtain the following:

• bqpgka.

- Set a. All problems are solved in the root node of the Branch &
Bound tree within seconds.

Set b. These instances could all be solved, but were extremely chal-
lenging for our algorithm. The reason is, that the objective value in
the Max-Cut formulation is of magnitude 106, and therefore even a
relative gap of 0.1% does not allow to fathom the node. However,
allowing a relative gap of 0.1%, we can solve all problems in the root
node .of the Branch & Bound tree.

- Set c. Similar to a, also these instances were solved within some
seconds in the root node of the Branch & Bound tree.

- Set d. The problems of set d could be solved within at most 7 minutes.

- Set e. The instances with 10, 20, 30 and 40% density could all be
solved within 2 hours of computation time. The 50% instance has
been solved after 35 hours. According to [25],these problems have not
been solved before .

• beasley.

Solving the 10 problems of size n = 100can be done in the root node within
one minute. Regarding the n = 250 instances, two out of the ten problems
have been solved before (see [25]), for the other eight problems we could
prove optimality for the first time. Six out of these eight were solved within
5 hours, the other two needed 15 and 80 hours, respectively .

• bqpbe.

We report the results of Billionnet and Elloumi [23] and our results in
Table 6.4. As is shown in this table, [23] could not solve all out of the
ten problems from the n = 120 variables and 80% density instances on,
whereas our method still succeeded to solve them all. From the instances
n = 150,d = 80% on, the convex-quadratic approach failed to solve any
instance within their time limit of 3 hours. We still managed to obtain
solutions to all of these instances (although for one graph it took 54 hours).
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[23] Biq Mac
CPU time (sec) CPU time (sec)

n d solved mm avg. max solved mm avg. max
100 1.0 10 27 372 1671 10 86 178 436
120 0.3 la 168 1263 4667 la 29 162 424
120 0.8 6 322 3909 9898 10 239 1320 3642
150 0.3 1 6789 10 1425 2263 2761
150 0.8 a - la 1654 1848 2133
200 0.3 a - 10 6282 35294 174819
200 0.8 0 - 10 5541 47740 148515
250 0.1 0 - 10 12211 13295 16663

Table 6.4: Comparison between the algorithm of Billionnet and Elloumi [23]
and our Branch & Bound approach. Computation times of the convex-quadratic
algorithm were obtained on a laptop Pentium IV, 1.6 GHz (time limit 3 hours),
our results were computed on a Pentium IV of 3.6 GHz.

Deciding which branching rule is advisable for these instances is not so ob-
vious anymore. Tentatively, for sparse problems R3 is superior, but the denser
the instances are, the better is the performance of R2. A general recipe or an
intelligent way of deciding at the top levels of the B&B tree which rule to follow
would be worthwhile.

6.6 Extensions

Apart from (MC) and (QP) other problems from Combinatorial Optimization
can be modelled in such a way, that we can use Biq Mac to solve them.

6.6.1 The Bisection Problem

In Section 2.3 we introduced the graph partitioning problem, and as a special
case of it the bisection problem, which is given as

mm !L:[ij]EEG,;j(l- XiXj)

s.t. L:~=lXi = 0
xE {:i:1}n,
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for a graph G = (V (G), E( G)) and edge weights Cij. By setting X := XXT, the
following natural semidefinite relaxation arises:

mm ~trLX
s.t. trJX = a

diag(X) = e
XtO,

where L is the Laplace matrix of graph Gand J is the matrix of all ones.
Let A be the adjacency matrix of an unweighted graph. Solving the Max-Cut

problem of a graph with cost matrix

B = -A+ J

gives a cut 8(S) with value z. If ISI = ~ then

n2
--z
4

is the optimal value of the bisection problem. (The "-" in B = -A + J arises,
because we do a maximization instead of minimizing, and the J comes from the
constraint tr JX = 0, that is lifted into the objective function. The Lagrange
multiplier for this constraint is guessed to be one.)

We consider the instances introduced by Johnson, Aragon, McGeoch, and
Schevon [63] of size n = 124 and n = 250 and summarize in Table 6.5 the best
results for these instances known so far (see Karisch and Rendl [65]). With our
algorithm we could prove optimality of the known lower bounds of all instances
of size n = 124, and one of the instances of size n = 250. To the best of our
knowledge, these exact solutions were obtained for the first time. The improved
gap for the instances of size n = 250 and densities 0.02, 0.04 and 0.08 were
obtained after a time limit of 32 hours cpu-time.

6.6.2 Max-2Sat
In Section 2.4 the Max-Sat problem has been introduced, and as a special case
of it Max-kSat. We consider here Max-2Sat, Le. we have Boolean variables
{Xl, ... , Xn} and clauses that are the disjunction of at most two literals. Let
us introduce variables {YI, ... , Yn}, with the correspondence Yi = a if Xi is false,
and Yi = 1 if Xi is true. For each clause we can then form a cost coefficient in the
(0-1) model by the following transformation

Xi V Xj ---t Yi + Yj - YiYj,

Xi V Xj ---t 1 - Yi + YiYj,
Xi V Xj ---t 1 - YiYj.

With this correspondence every problem arising from Max-2Sat can be trans-
formed to an instance of (QP)and thus solved by Biq Mac.
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best known Biq Mac
n d bound IEcutl gap gap

124 0.02 12.01 13 a a
124 0.04 61.22 63 1 a
124 0.08 170.93 178 7 a
124 0.16 440.08 449 8 a
250 0.01 26.06 29 2 a
250 0.02 103.61 114 10 8
250 0.04 327.88 357 29 22
250 0.08 779.55 828 48 35

Table 6.5: Best known results of the bisection problem for the Johnson Graphs
and the new gap obtained by Biq Mac.

6.6.3 The Stable Set Problem

The stable set problem of a graph G = (V(G),E(G)), introduced in Section 2.2,
can also be transformed into a problem of the form (QP), such that the stable
set problem can be solved using Biq Mac.

To do this transformation, let Ä be the adjacency matrix of the complement
of graph G. Define

with M being a sufficiently large number and solve the problem

max xTBx
S.t. x E {a, l}n . (6.3)

. This is a quadratic (0-1) problem, that can be transformed to Max-Cut. Prob-
lem (6.3) asks to assign a or 1 to each variable Xi' Thus, bij contributes to the
objective value if and only if both, Xi and Xj, are assigned value 1, meaning that
for bij = -M, it is very likely that not both, Xi and Xj will have value 1.

Thus, all nodes i with Xi = 1 form a stable set since an edge of the original
graph (corresponding entry in B has value - M) is (hopefully) not in the cut.
Of course, the final result has to be checked, since there is no guarantee that the
solution will indeed form a stable set.
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6.6.4 The Quadratic Knapsack Problem
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Another standard Combinatorial Optimization problem is the quadratic knapsack
problem:

(QK) max xTCx
s.t. aT x:::; b

x E {a, l}n.
A detailed study of this problem can be found in the book of Kellerer, Pferschy,
and Pisinger [67]. Clearly, by simply providing the possibility of handling one
linear constraint, we can also solve problems of this type by Biq Mac. Incorpo-
rating the possibility of having one (or even more) linear constraint(s) is part of
ongoing research with C. Buchheim [personal communication, 2006].

6.7 Concluding Remarks on Biq Mac
The solver Biq Mac, available via the web interface http://BiqMac .uni - klu.
ac. at, solves (MC) and (QP) problems of any density up to size n = 100. To the
best of our knowledge, no other algorithm can manage these instances in a routine
way. Many kind of instances of sizes up to n = 300 can be solved as well. For
the first time optimality could be proved for several problems of the OR-library,
for instance all problems that are reported at the pseudo-Boolean website [25]
with dimensions up to n = 250 are now solved. Also for the bisection problem
optimality for some of the Johnson-Graphs has been proved for the first time,
and for those where we could not close the gap, we reduced it significantly.

Using Biq Mac for sparse graphs is not advisable. Since linear programming
based methods are capable of exploiting sparsity, solutions might be obtained
much faster when applying these methods to sparse data.

We are currently working on an extended version of Biq Mac that is capable
of handling some linear constraints explicitly, which will broaden the field of
applications. Also, having a recipe for the proper branching rule or a way of
dynamically deciding which rule to use, is work in progress.



Summary and Outlook

This thesis covers algorithms for large-scale Semidefinite Programs, as well as
solution methods for the Max-Cut problem, an NP-complete problem arising
from Combinatorial Optimization.

We explain basic theoretical issues of Semidefinite Programs and the most
well-known solution methods (Chapter 1). The field of Combinatorial Optimiza-
tion problems is reviewed (Chapter 2) and one of the problems, namely the Max-
Cut problem, is discussed in more detail in Chapter 3.

Chapter 4 addresses SDP based relaxations for Max-Cut. We introduce a new
relaxation for sparse problems where the support of the graph plays a major role
to develop the SDP-relaxation and we implemented a Bundle Method to solve
this Semidefinite Program. A topic of further investigations is to look at the
practical behavior of other sparse models that are independent of the structure
of the graph.

The increasing demand of algorithms for solving large-scale SDPs motivated
the work in Chapter 5. Apart from recalling the concept of Bundle Methods and
applying it in Semidefinite Programming, we developed a Spectral Bundle method
that uses second order information. An implementation of this algorithm is part
of ongoing work. This code should then also be capable of solving the sparse
relaxation from Chapter 4 for higher dimensions. Another new algorithm intro-
duced in Chapter 5 is the Boundary Point Method. The augmented Lagrangian
algorithm is the background of this method, that works astonishing well for the
problem of calculating the 'l9-numberof a graph. For solving relaxations arising
from other sources, the algorithm does not behave as nicely. Finding a way to
make the Boundary Point Method applicable to more problems is part of future
research.

In the final chapter we introduced the Biq Mac solver - a tool for solving Max-
Cut (or, equivalently unconstrained binary quadratic programs) and the Biq Mac
library - various instances arising from Max-Cut or unconstrained quadratic (a-
1) programming. We made this solver publicly available via the web-site http:
/ /BiqMac. uni -klu. ac. at. Also, the collection of test problems is accessible. An
ongoing maintenance of this library in order to develop benchmarks for Max-Cut
and unconstrained quadratic (0 -1) problems is intended.
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Appendix A

Background Material

A.I Positive Semidefinite Matrices
In this section we state some of the definitions and theorems concerning positive
semidefinite matrices. All the proofs can be found in Horn and Johnson [61].

Theorem A.I (Characterization of positive semidefinite matrices)
Let X E Sn. The following statements are equivalent .

• X t: O .

• À(X) ~ 0 for all Eigenvalues À of X .

• All principal minors of X are non-negative .

• :3L E IRnxn: X = LLT.

Lemma A.2 Any principal submatrix of a positive definite matrix is positive
definite.

Theorem A.3 (Fejer) A E s;t if and only iftrAB ~ 0 VB E s;t

Lemma AA If A, B E s;t, then (A, B) > 0 and (A, B) - 0 if and only if
AB=O.

Observation A.5 If A E s;t and aii = 0 for some i E {I, ... ,n}, then aij =
aji = 0 for all j E {I, ... ,n}.
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Definition A.6 (Schur complement) If

where A is nonsingular and C is symmetric. Then

is called the Schur complement of A in M.

Theorem A.7 Let

M= (tT ~)

where A is positive definite and C is symmetric. Then

A.2 Convexity, Minimax Inequality
Definition A.8 (convex set) A set C ç ]Rn is convex if Cl, C2 E C implies
aCI + (1 - a)c2 E C for all a E [0,1].

Definition A.9 (convex hull) The convexhull conv(S) of some set S ç ]Rnis
the smallest convex set that contains S.

Lemma A.IO conv({vvT, Ilvll = I}) = {W ~ 0, trW = I}.

Lemma A.II (minimax inequality) [117, Lemma 36.1} Let f be a function
from the non-empty product set C x D to [-00,00], then

sup inf f(u,v)::; inf supf(u,v).
uEC vED vED uEC

Corollary A.12 [117, Theorem 37.3) Let f be a function from the non-empty
product set C x D, C and D being closed convex sets in]Rm and ]Rn, respectively,
to [-00,00]. If either C or D is bounded, then

sup inf f(u,v) = inf supf(u,v).
UEcVED VEDuEC
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Problem Generation

B.l rudy Calls
All Max-Cut instances, apart from those arising from physical applications, are
generated using rudy, a machine independent graph generator written by G. Ri-
naldi [116]. The commands are given in this section.

rudy -rnd_graph 80 50 8000 > 805_80.0
rudy -md_graph 80 50 8001 > 805_80.1
rudy -md_graph 80 50 8002 > 805_80.2
rudy -md_graph 80 50 8003 > 805_80.3
rudy -md_graph 80 50 8004 > 805_80.4
rudy -md_graph 80 50 8005 > 805_80.5
rudy -rnd_graph 80 50 8006 > 805_80.6
rudy -rnd_graph 80 50 8007 > 805_80.7
rudy -md_graph 80 50 8008 > 805_80.8
rudy -md_graph 80 50 8009 > 805_80.9

rudy -md_graph 100 50 10000 > 805_100.0
rudy -rnd_graph 100 50 10001 > 805_100.1
rudy -rnd_graph 100 50 10002 > 805_100.2
rudy -md_graph 100 50 10003 > 805_100.3
rudy -rnd_graph 100 50 10004 > 805_100.4
rudy -rnd_graph 100 50 10005 > 805_100.5
rudy -rnd_graph 100 50 10006 > 805_100.6
rudy -rnd_graph 100 50 10007 > 805_100.7
rudy -md_graph 100 50 10008 > 805_100.8
rudy -md_graph 100 50 10009 > 805_100.9

rudy -md_graph 100 10 1000 -random 0
rudy -rnd_graph 100 10 1001 -random 0
rudy -rnd_graph 100 10 1002 -random 0
rudy -md_graph 100 10 1003 -random 0
rudy -rnd_graph 100 10 1004 -random 0
rudy -rnd_graph 100 10 1005 -random 0
rudy -md_graph 100 10 1006 -random 0
rudy -md_graph 100 10 1007 -random 0
rudy -md_graph 100 10 1008 -random 0
rudy -md_graph 100 10 1009 -random 0

rudy -md_graph 100 99 1000 -random 0
rudy -rnd_graph 100 99 1001 -random 0
rudy -rnd_graph 100 99 1002 -random 0
rudy -rnd_graph 100 99 1003 -random 0
rudy -md_graph 100 99 1004 -random 0
rudy -md_graph 100 99 1005 -random 0
rudy -rnd_graph 100 99 1006 -random 0
rudy -rnd_graph 100 99 1001 -random 0
rudy -md_graph 100 99 1008 -random 0
rudy -rnd_graph 100 99 1009 -random 0

1000 -times 2 -plus -1 > pIlls_IOO.a
1001 -times 2 -plus -1 > pnls_l00.1
1002 -times 2 -pIUB -1 > pnls_100.2
1003 -times 2 -plus -1 > pmls_lOO. 3
1004 -times 2 -plus -1 > pnls_100.4
1005 -tlmes 2 -plus -I > ""ls_100.5
1006 -tlmes 2 -plus -I > ""ls_IOO. 6
1007 -times 2 -plus -1 > pIlls_lOO. 7
1008 -times 2 -plus -1 > pn18_100. 8
1009 -times 2 -plus -I > ""ls_IOO. 9

1000 -times 2 -plus -I > ""ld_IOO. 0
1001 -times 2 -plus -I > ""ld_loo.1
1002 -times 2 -plus -1 > pald_IOO. 2
1003 -tlmes 2 -plus -I > ""ld_IOO. 3
1004 -times 2 -plus -I > ""ld_IOO.4
1005 -tlmes 2 -plus -I > ""ld_IOO. 5
1006 -times 2 -plus -1 > pDld_l00. 6
1007 -times 2 -pIUB -1 > pald_IOO. 7
1008 -tlmes 2 -plus -I > ""Id_loo. 8
1009 -times 2 -plus -I > ""Id_loo. 9

rudy -rnd_graph 100 50 1000 -random -10 iO 1000 > ..05_100.0
rudy -md_graph 100 50 1001 -random -10 iO 1001 > ..05_100.1
rudy -md_graph 100 50 1002 -random -10 10 1002 > ..05_100.2
rudy -md_graph 100 50 1003 -random -10 10 1003 > ..05_100.3
rudy -md_graph 100 50 1004 -random -10 10 1004 > ..05_100.4

101
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rudy -md_graph 100 50 1005 -random -10 10 1005 > ..05_100.5
rudy -md_graph 100 50 1006 -random -10 10 1006 > ..05_100.6
rudy -md_graph 100 50 1007 -random -10 10 1007 > ..05_100.7
rudy -md_graph 100 50 1008 -random -10 10 1008 > ..05_100.8
rudy -md_graph 100 50 1009 -random -10 10 1009 > ..05_100.9

rudy -md_graph 100 90 1000 -random -10 10 1000 > ..09_100.0
rudy -md_graph 100 90 1001 -random -10 10 1001 > ..09_100.1
rudy -md_graph 100 90 1002 -random -10 10 1002 > ..09_100.2
rudy -md_graph 100 90 1003 -random -10 10 1003 > ..09_100.3
rudy -md_graph 100 90 1004 -random -10 10 1004 > ..09_100.4
rudy -md_graph 100 90 1005 -random -10 10 1005 > ..09_100.5
rudy -rod_graph 100 90 1006 -random -10 10 1006 > ..09_100.6
rudy -md_graph 100 90 1007 -random -10 10 1007 > ..09_100.7
rudy -md_graph 100 90 1008 -random -10 10 1008 > ..09_100.8
rudy -md-sraph 100 90 1009 -random -10 10 1009 > ..09_100.9

rudy -rod_graph 100 50 1000 -random 1 10 1000 > p..o5_100.0
rudy -md_graph 100 50 1001 -random 1 10 1001 > p..o5_100.1
rudy -md_graph 100 50 1002 -random 1 10 1002 > p..o5_100. 2
rudy -md_graph 100 50 1003 -random 1 10 1003 > p..o5_100.3
rudy -rod_graph 100 50 1004 -random 1 10 1004 > p..o5_100.4
rudy -md_graph 100 50 1005 -random 1 10 1005 > p..o5_100. 5
rudy -md_graph 100 50 1006 -random 1 10 1006 > pv05_100.6
rudy -md_graph 100 50 1007 -random 1 10 1007 > p..o5_100.7
rudy -rod_graph 100 50 1008 -random 1 10 1008 > p..o5_100. 8
rudy -rod-sraph 100 50 1009 -random 1 10 1009 > p..o5_100. 9

rudy -md_graph 100 90 1000 -random 1 10 1000 > pw09_100.0
rudy -rod_graph 100 90 1001 -random 1 10 1001 > p..o9_l00.l
rudy -rod_graph 100 90 1002 -random 1 10 1002 > pw09_100.2
rudy -md-sraph 100 90 1003 -random 1 10 1003 > pw09_100.3
rudy -rod_graph 100 90 1004 -random 1 10 1004 > pw09_100.4
rudy -rod_graph 100 90 1005 -random 1 10 1005 > pw09_100.5
rudy -md_graph 100 90 1006 -random 1 10 1006 > p..o9_100.6
rudy -rod_graph 100 90 1007 -random 1 10 1007 > pw09_100.7
rudy -md_graph 100 90 1008 -random 1 10 1008 > pw09_100.8
rudy -rod_graph 100 90 1009 -random 1 10 1009 > pw09_100.9

B.2 Pardalos-Rodgers Generator Parameters
In this section the parameters for calling the generator of Pardalos and Rodgers
[102] are given. Unfortunately, for the beasley data we do not know the seed,
but the data sets can be downloaded from the OR-Library [17].

The parameters are specified in the following order:

n density seed OffDiagLower OffDiagUpper DiagLower DiagUpper

Set a.
50 0.1 10 -100 100 -100 100
60 0.1 10 -100 100 -100 100
70 0.1 10 -100 100 -100 100
80 0.1 10 -100 100 -100 100
50 0.2 10 -100 100 -100 100
30 0.4 10 -100 100 -100 100
30 0.5 10 -100 100 -100 100
100 0.0625 10 -100 100 -100 100

c.
40 0.8 10 -100 100 -50 50
50 0.6 70 -100 100 -50 50
60 0.4 31 -100 100 -50 50
70 0.3 34 -100 100 -50 50
80 0.2 8 -100 100 -50 50
90 0.1 80 -100 100 -50 50

100 0.1 142 -100 100 -50 50

Parameters for the bqpgka Instances

Set b. Set
20 1.0 10 0 63 -100 0
30 1.0 10 0 63 -100 0
40 1.0 10 0 63 -100 0
50 1.0 10 0 63 -100 0
60 1.0 10 0 63 -100 0
70 1.0 10 0 63 -100 0
80 1.0 10 0 63 -100 0
90 1.0 10 0 63 -100 0

100 1.0 10 0 63 -100 0
125 1.0 10 0 63 -100 0

B.2.!

Set d.
100 0.1 31 -50 50 -75 75
100 0.2 37 -50 50 -75 75
100 0.3 143 -50 50 -75 75
100 0.4 47 -50 50 -75 75
100 0.5 31 -50 50 -75 75
100 0.6 47 -50 50 -75 75
100 0.7 97 -50 50 -75 75
100 0.8 133 -50 50 -75 75
100 0.9 307 -50 50 -75 75
100 1.0 1311 -50 50 -75 75

Set e.
200 0.1 51 -50 50 -100 100
200 0.2 43 -50 50 -100 100
200 0.3 34 -50 50 -100 100
200 0.4 73 -50 50 -100 100
200 0.5 89 -50 50 -100 100
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B.2.2 Parameters for the bqpbe Instances
100 1.0 1. -50 50 -100 100 150 0.3 1. -50 50 -100 100 200 0.8 1. -50 50 -100 100
100 1.0 2. -50 50 -100 100 150 0.3 2. -50 50 -100 100 200 0.8 2. -50 50 -100 100
100 1.0 3. -50 50 -100 100 1500.3 3. -50 50 -100 100 200 0.8 3. -50 50 -100 100
100 1.0 4. -50 50 -100 100 150 0.3 4. -50 50 -100 100 200 0.8 4. -50 50 -100 100
100 1.0 5. -50 50 -100 100 150 0.3 5. -50 50 -100 100 200 0.8 5. -50 50 -100 100
100 1.0 6. -50 50 -100 100 150 0.3 6. -50 50 -100 100 200 0.8 6. -50 50 -100 100
100 1.07. -50 50 -100 100 1500.37. -50 50 -100 100 2000.87. -50 50 -100 100
100 1.0 8. -50 50 -100 100 150 0.3 8. -50 50 -100 100 200 0.8 8. -50 50 -100 100
100 1.0 9. -50 50 -100 100 150 0.3 9. -50 50 -100 100 200 0.8 9. -50 50 -100 100
100 1.0 10. -50 50 -100 100 150 0.3 10. -50 50 -100 100 200 0.8 10. -50 50 -100 100

120 0.3 1. -50 50 -100 100 150 0.8 1. -50 50 -100 100 250 0.1 1. -50 50 -100 100
120 0.3 2. -50 50 -100 100 150 0.8 2. -50 50 -100 100 250 0.1 2. -50 50 -100 100
120 0.3 3. -50 50 -100 100 150 0.8 3. -50 50 -100 100 250 0.1 3. -50 50 -100 100
120 0.3 4. -50 50 -100 100 150 0.8 4. -50 50 -100 100 2500.1 4. -50 50 -100 100
120 0.3 5. -50 50 -100 100 150 0.8 5. -50 50 -100 100 250 0.1 5. -50 50 -100 100
120 0.3 6. -50 50 -100 100 150 0.8 6. -50 50 -100 100 250 0.1 6. -50 50 -100 100
1200.37. -50 50 -100 100 1500.87. -50 50 -100 100 250 0.1 7. -50 50 -100 100
120 0.3 8. -50 50 -100 100 150 0.8 8. -50 50 -100 100 250 0.1 8. -50 50 -100 100
120 0.3 9. -50 50 -100 100 150 0.8 9. -50 50 -100 100 250 0.1 9. -50 50 -100 100
120 0.3 10. -50 50 -100 100 150 0.8 10. -50 50 -100 100 250 0.1 10. -50 50 -100 100

120 0.8 1. -50 50 -100 100 200 0.3 1. -50 50 -100 100
120 0.8 2. -50 50 -100 100 200 0.3 2. -50 50 -100 100
120 0.8 3. -50 50 -100 100 200 0.3 3. -50 50 -100 100
120 0.8 4. -50 50 -100 100 200 0.3 4. -50 50 -100 100
120 0.8 5. -50 50 -100 100 200 0.3 5. -50 50 -100 100
120 0.8 6. -50 50 -100 100 200 0.3 6. -50 50 -100 100
1200.87. -50 50 -100 100 2000.37. -50 50 -100 100
120 0.8 8. -50 50 -100 100 200 0.3 8. -50 50 -100 100
120 0.8 9. -50 50 -100 100 200 0.3 9. -50 50 -100 100
120 0.8 10. -50 50 -100 100 200 0.3 10. -50 50 -100 100
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Appendix C

Tables with Detailed Numerical
Results

This chapter presents the detailed numerical results. For each instance collected
in the Biq Mac library, we tried solving the problem using both branching rules
and list in the subsequent tables the solution times in seconds and the number
of Branch & Bound nodes. All calculations were done on a Pentium IV with 3.6
GHz and 2GB RAM, operating system Linux.

If no run-time is given, the problem could not be solved within a time limit of
50 hours CPU-time. Instance bqp250-8 was the only one of the bqp250 instances
that could not be solved within 50 hours. Therefore, we suspended the time limit
for this instance and could solve it within 80 hours CPU-time.
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Problem R2 R3
number solution time nodes time nodes
n = 80

a 929 182.92 71 238.73 55
1 941 76.84 15 18.98 3
2 934 112.21 33 84.50 19
3 923 976.91 351 2203.60 583
4 932 133.78 69 212.61 45
5 926 215.35 75 231.77 55
6 929 123.67 57 148.46 31
7 929 82.37 25 91.59 21
8 925 162.59 63 264.24 63
9 923 330.96 123 589.17 151

avg 239.76 408.37
n = 100

a 1430 2776.93 553 9675.74 1365
1 1425 13464.55 2925 71701.51 10793
2 1432 624.29 131 1721.97 215
3 1424 6702.87 1267 22413.26 3343
4 1440 317.40 65 551.99 65
5 1436 582.25 131 1358.17 161
6 1434 677.97 157 1912.96 243
7 1431 1431.73 289 4889.02 637
8 1432 1294.62 253 3413.08 447
9 1430 1852.16 329 4141.01 569

avg 2972.48 12177.87

Table C.1: Test runs on GO.5 - unweighted graphs with edge probability 1/2,
generated by rudy [116].



Problem R2 R3
number solution time nodes time nodes
n = 100,d = 10%

0 127 115.42 15 108.55 9
1 126 462.06 73 852.32 87
2 125 83.46 9 71.83 5
3 111 445.69 65 915.51 87
4 128 431.47 61 412.21 41
5 128 78.28 9 102.49 7
6 122 280.45 49 358.55 33
7 112 6.07 (1 node)
8 120 93.75 9 27.48 3
9 127 83.48 9 53.12 3

avg 208.01 315.44
n = 100,d = 99%

0 340 4872.18 937 16426.31 2259
1 324 9050.11 1811 34012.08 4663
2 389 7096.11 1347 23822.08 3307
3 400 1397.60 271 5076.16 633
4 363 5725.13 1123 16390.85 2185
5 441 1427.39 265 3459.10 421
6 367 1244.64 219 2581.31 299
7 361 398.20 111 1206.08 121
8 385 435.97 79 551.26 65
9 405 2003.08 351 4769.97 607

avg 3365.04 10829.52

Table C.2: Test runs on G-1/O/1, generated by rudy [116].
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Problem R2 R3
number solution time nodes time nodes
n = 100,d = 0.5

0 1646 3834.44 741 10947.47 1429
1 1606 864.83 175 2032.56 235
2 1902 725.80 145 1283.40 147
3 1627 2698.21 511 7391.22 929
4 1546 4026.38 795 12924.05 1637
5 1581 4421.14 815 12852.52 1631
6 1479 1017.11 187 2001.12 229
7 1987 518.67 97 935.22 103
8 1311 4424.00 781 14528.44 1897
9 1752 513.75 99 620.35 63

avg 2304.43 6551.64
n = 100, d = 0.9

0 2121 2643.33 479 5635.04 715
1 2096 11547.53 2427 61864.89 8551
2 2738 5360.98 1021 16919.78 2249
3 1990 6359.25 1231 29773.96 4085
4 2033 2798.67 543 8506.84 1045
5 2433 303.18 51 206.95 15
6 2220 396.64 105 863.69 93
7 2252 1620.30 277 3213.58 387
8 1843 774.00 187 1930.54 215
9 2043 2513.62 469 7228.53 941

avg 3413.75 13614.38

Table C.3: Test runs on G[-lO,lOj, generated by rudy [116].



Problem R2 R3
number solution time nodes time nodes
n = 100,d = 0.5

0 8190 7330.78 1465 31722.94 4557
1 8045 2401.30 459 8225.73 1121
2 8039 3576.21 717 9948.73 1339
3 8139 588.33 111 1497.10 183
4 8125 3735.51 765 15701.08 2119
5 8169 982.42 181 1946.29 251
6 8217 6042.72 1281 22252.43 3041
7 8249 1865.00 337 4107.17 499
8 8099 434.10 121 757.90 79
9 8099 1655.69 325 4971.55 629

avg 2861.21 10113.09
n = 100, d = 0.9

0 13585 3310.94 619 10167.78 1331
1 13417 3932.08 753 14050.58 1843
2 13461 1391.55 257 3502.67 433
3 13656 741.64 155 2068.90 245
4 13514 2089.08 397 4966.71 611
5 13574 2628.79 545 7200.92 891
6 13640 1980.68 355 5417.56 677
7 13501 5154.51 1007 16854.64 2231
8 13593 1506.58 299 4360.23 515
9 13658 1263.11 255 3323.02 391

avg 2399.90 7191.30

Table C.4: Test runs on C[I,lOl, generated by rudy [116].
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Problem R2 R3
number solution time nodes time nodes

2 dimensional
t2g10_5555 6049461 10.12 (1 node)
t2g10_6666 5757868 15.94 (1 node)
t2g103777 6509837 14.89 (1 node)
t2g15_5555 15051133 344.47 3 304.03 3
t2g15_6666 15763716 369.64 3 359.87 3
t2g153777 15269399 1556.21 13 346.89 3
t2g20_5555 24838942 84289.71 195 6690.99 9
t2g20_6666 29290570 35205.95 45
t2g203777 28349398 53363.11 101 8092.80 11
3 dimensional
t3g5_5555 10933215 18.01 (1 node)
t3g5_6666 11582216 24.52 (1 node)
t3g53777 11552046 26.00 (1 node)
t3g6_5555 17434469 292.41 3 280.85 3
t3g6_6666 20217380 8849.19 185 2025.74 19
t3g63777 19475011 290.09 3 277.95 3
t3g7_5555 28302918 432.71 (1 node)
t3g7_6666 33611981 550.12 (1 node)
t3g73777 29118445 116550.36 567 1117782.75 243

Table C.5: Test runs on torus graphs with gaussian distribution from F. Liers [per-
sonal communication, Dec. 2005].
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Problem R2 R3
number solution time nodes time nodes

n = 100
2.5-100_5555 2460049 542.28 85 92.43 7
2.5-100_6666 2031217 502.50 55 65.65 5
2.5-100-7777 3363230 654.60 81 47.49 3
3.0-100_5555 2448189 276.21 91 96.45 7
3.0-100_6666 1984099 306.41 137 33.82 3
3.0-100-7777 3335814 80.70 5 48.16 3
n = 150
2.5-150_5555 4363532 1342.15 49 265.14 7
2.5-150_6666 4057153 2940.15 167 338.94 7
2.5-150-7777 4243269 2752.18 157 559.14 11
3.0-150_5555 4279261 1932.23 157 278.02 7
3.0-150_6666 3949317 1229.10 127 235.00 7
3.0-150-7777 4211158 1852.36 147 366.80 9
n = 200
2.5-200_5555 6294701 8139.05 277 604.76 7
2.5-200_6666 6795365 4518.01 73 1074.65 11
2.5-200-7777 5568272 10258.25 599 1298.48 13
3.0-200_5555 6215531 7048.29 263 607.20 9
3.0-200_6666 6756263 4806.96 115 1133.12 13
3.0-200-7777 5560824 8357.32 557 1362.60 15
n = 250
2.5-250_5555 7919449 14740.00 409 10828.49 59
2.5-250_6666 6925717 7581.61 87 4623.67 27
2.5-250-7777 6596797 15868.20 739 4249.66 23
3.0-250_5555 7823791* 16351.90 739 6388.59 39
3.0-250_6666 6903351* 16529.27 526 949.19 5
3.0-250-7777 6418276* 11979.72 251 3443.85 19
n = 300
2.5-300_5555 8579363 77388.27 1207 24226.96 83
2.5-300_6666 9102033 79469.93 1041 32678.08 105
2.5-300-7777 8323804 102622.88 1523 46810.17 139
3.0-300_5555 8493173* 26310.19 499 8414.36 29
3.0-300_6666 8915110* 26437.34 169 5541.51 19
3.0-300-7777 8242904* 29937.24 475 11533.05 39

Table C.6: Test runs on Ising instances from F. Liers [personal communication,
Dec. 2005].
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Problem MC R2 R3
number n density solution offset time nodes time nodes

la 50 10% 3414 196 10.80 3 8.19 3
2a 60 10% 6063 2368 0.93 (1 node)
3a 70 10% 6037 1389 6.57 (1 node)
4a 80 10% 8598 3159 4.50 (1 node)
5a 50 20% 5737 1915 1.17 (1 node)
6a 30 40% 3980 1318 0.27 (1 node)
7a 30 50% 4541 1597 0.25 (1 node)
8a 100 6.25% 11190 2329 3.85 (1 node)
Ib 20 100% 133 -17568 7.28 17 3.35 5
2b 30 100% 121 -41031 22.02 39 24.30 21
3b 40 100% 118 -74655 47.79 47 116.64 61
4b 50 100% 129 -121089 146.69 85 499.73 187
5b 60 100% 150 -175052 278.80 159 949.13 281
6b 70 100% 146 -240964 746.59 265 3553.72 757
7b 80 100% 160 -312422 1899.89 521 7995.91 1359
8b 90 100% 145 -397423 5853.37 1573 37551.34 5259
9b 100 100% 137 -493637 12887.51 3687 108811.64 13335
lOb 125 100% 154 -770674 44382.63 6195
le 40 80% 5058 1627 0.84 (1 node)
2c 50 60% 6213 2343 0.80 (1 node)
3c 60 40% 6665 2517 1.90 (1 node)
4c 70 30% 7398 2144 4.04 (1 node)
5c 80 20% 7362 3672 3.56 (1 node)
6c 90 10% 5824 1942 5.61 (1 node)
7c 100 10% 7225 1824 4.81 (1 node)

Table C.7: Test runs on (QP) instances given by Glover et al. [37].
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Problem MC R2 R3
number density solution offset time nodes time nodes
n = 100

Id 10% 6333 1869 6.90 (1 node)
2d 20% 6579 -2342 73.56 5 58.51 3
3d 30% 9261 -1839 163.80 13 58.83 3
4d 40% 10727 -1439 512.96 73 127.74 7
5d 50% 11626 -110 396.16 133 408.82 27
6d 60% 14207 1245 246.92 21 55.95 3
7d 70% 14476 3063 441.55 139 287.35 19
8d 80% 16352 501 218.57 17 50.72 3
9d 90% 15656 -3992 542.82 137 227.36 13
IOd 100% 19102 5309 523.06 115 236.75 13

n = 200
le 10% 16464 -1217 6402.55 111 1064.70 9
2e 20% 23395 3196 6985.19 347 106660.29 877
3e 30% 25243 -4410 6274.33 239 30790.67 291
4e 40% 35594 5813 5865.77 315 21308.70 173
5e 50% 35154 6924 124428.82 4653

Table C.8: Test runs on (QP) instances given by Glover et al. [37].
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Problem I MC R2 R3
number solution offset time nodes time nodes
n = 100,d = 0.1

1 7970 -3834 10.86 (1 node)
2 11036 1455 13.80 (1 node)
3 12723 6069 6.43 (1 node)
4 10368 -221 5.96 (1 node)
5 9083 -1812 7.56 (1 node)
6 10210 771 850.62 193 I 114.61 7
7 10125 707 9.68 (1 node)
8 11435 -508 9.24 (1 node)
9 11455 910 5.79 (1 node)
10 12565 3846 9.99 (1 node)
avg 92.99 19.39

n = 250, d = 0.1
1 45607 -1214 18110.09 273 9271.20 37
2 44810 5797 15864.07 187 4822.60 19
3 49037 16642 20832.16 275 4873.42 19
4 41274 -7978 18379.23 251 4522.65 17
5 47961 4665 18486.30 319 5363.81 21
6 41014 -2917 18182.37 289 52501.54 223
7 46757 8740 20056.34 369 9071.76 37
8 35726 -13323
9 48916 12071 17179.34 297 11576.67 47
10 40442 -1657 17594.49 225 16479.80 63
avg 18298.27 13164.83

Table C.9: Test runs on (QP) instances of Beasley [18].
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Problem MC R2 R3
number solution time nodes time nodes
n = 100, d = 1.0

1 19412 664.57 129 93.43 5
2 17290 706.48 95 95.36 5
3 17565 544.56 71 85.61 5
4 19125 600.70 165 267.77 15
5 15868 535.24 101 148.81 9
6 17368 502.52 63 77.87 5
7 18629 523.12 103 122.92 9
8 18649 404.90 131 435.56 31
9 13294 456.88 149 319.53 23

10 15352 407.03 53 132.23 9
avg 524.70 177.91

n = 120, d = 0.3
1 13067 1083.60 175 423.66 15
2 13046 401.61 19 89.22 3
3 12418 696.53 43 103.24 3
4 13867 1129.83 119 195.63 7
5 11403 886.36 61 150.99 5
6 12915 259.34 13 75.39 3
7 14068 36.57 (1 node)
8 14701 28.69 (1 node)
9 10458 762.37 69 319.28 11

10 12201 737.44 53 194.88 7
avg 602.23 161.76

n = 120, d = 0.8
1 18691 688.17 171 2933.12 131
2 18827 818.38 153 1054.84 47
3 19302 985.86 145 521.65 21
4 20765 953.82 99 239.18 9
5 20417 926.51 81 259.37 9
6 18482 1030.43 129 505.80 21
7 22194 669.08 173 2268.45 89
8 19534 773.28 173 3642.45 167
9 18195 1111.93 179 1010.81 41

10 19049 1014.86 187 763.31 29
avg 897.23 1319.90

Table C.10: Test runs on (QP) instances introduced by Billionnet and Elloumi
[23].
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Problem MC R2 R3
number solution time nodes time nodes

n = 150,d = 0.3
1 18889 2466.37 157 688.63 13
2 17816 2105.60 111 755.74 15
3 17314 1425.05 43 191.84 3
4 19884 2717.84 163 504.27 9
5 16817 2409.87 213 1836.79 37
6 16780 1857.17 219 10930.41 239
7 18001 2349.17 145 1371.85 27
8 18303 2760.79 317 16273.79 353
9 12838 2533.31 215 28383.01 681

10 17963 2003.51 237 13841.23 309
avg 2262.87 7477.76

n = 150, d = 0.8
1 27089 1925.36 221 5506.98 123
2 26779 1908.74 245 27225.34 615
3 29438 1653.92 253 17992.29 363
4 26911 2030.32 161 2456.64 51
5 28017 1729.93 249 7568.35 143
6 29221 1763.91 229 7927.27 177
7 31209 2132.61 231 24500.87 515
8 29730 1690.69 211 8194.58 167
9 25388 1759.55 255 20271.17 457

10 28374 1886.02 209 7425.42 147
avg 1848.11 12906.89

Table C.11: Test runs on (QP) instances introduced by Billionnet and Elloumi
[23].
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Problem MC R2 R3
number solution time nodes time nodes

n = 200, d = 0.3
1 25453 174819.36 9609
2 25027 19846.61 659
3 28023 6300.07 343 44787.86 425
4 27434 7780.47 405
5 26355 6282.42 329 171819.67 1705
6 26146 9836.04 381 89217.41 869
7 30483 7627.37 191 2695.88 23
8 27355 15607.40 553
9 24683 37224.26 1237

10 23842 67613.29 2273
avg 35293.73

n = 200, d = 0.8
1 48534 5540.85 299 101078.75 911
2 40821 148515.07 5859
3 43207 120890.63 6083
4 43757 9838.67 423
5 41482 41981.84 1486
6 49492 6884.75 371 9716.35 81
7 46828 6119.02 337
8 44502 121630.18 4947
9 43241 6479.26 257 21990.27 191

10 42832 9519.16 435
avg 47739.94

n = 250, d = 0.1
1 24076 12958.59 449 10466.01 45
2 22540 12833.21 319 6664.61 29
3 22923 13984.10 303 3841.13 15
4 24649 13181.81 443 7062.74 29
5 21057 16663.19 367 38850.59 181
6 22735 12531.74 271 12507.86 57
7 24095 12211.04 181 1348.28 5
8 23801 13128.19 427 31042.86 135
9 20051 12806.56 331 30602.57 139

10 23159 12648.59 461 28913.40 123
avg 13294.70 17130.01

Table C.12: Test runs on (QP) instances of the type of those introduced by
Billionnet and Elloumi [23], but with larger dimensions.
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