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Abstract

We present a method for finding exact solutions of Max-Cut, the prob-

lem of finding a cut of maximum weight in a weighted graph. We use a

Branch-and-Bound setting, that applies a dynamic version of the bundle

method as bounding procedure. This approach uses Lagrangian duality

to obtain a “nearly optimal” solution of the basic semidefinite Max-Cut

relaxation, strengthened by triangle inequalities. The expensive part of

our bounding procedure is solving the basic semidefinite relaxation of the

Max-Cut problem, which has to be done several times during the bound-

ing process.

We review other solution approaches and compare the numerical re-

sults with our method. We also extend our experiments to instances of

unconstrained quadratic 0-1 optimization and to instances of the graph

equipartition problem.

The experiments show, that our method nearly always outperforms all

other approaches. In particular, for dense graphs, where linear program-

ming based methods fail, our method performs very well. Exact solutions

are obtained in a reasonable time for any instance of size up to n = 100,

independent of the density. For some problems of special structure we can

solve even larger problem classes. We could prove optimality for several

problems of the literature where, to the best of our knowledge, no other

method is able to do so.

1 The Max-Cut Problem

The Max-Cut problem is one of the basic NP-hard combinatorial optimization
problems and has attracted scientific interest from both the discrete (see, e.g.,
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[17, 33, 35]) and the nonlinear optimization community (see, e.g., [14, 10, 28]).
The purpose of this paper is twofold. We first give an overview of all relevant

exact solution approaches for the Max-Cut problem in Section 3. This part is
of survey type, providing a literature overview and a discussion of the practical
limitations of these approaches. Secondly, we provide some computational expe-
rience with a Branch-and-Bound based method, that solves large size instances
of this problem to optimality. Here we call “large” an instance whose size makes
it very difficult to solve with the current state-of-the-art methods. The technical
details of our approach are given in Sections 4 and 5. Sections 6 and 7 contain a
description of the data sets and computational results on a variety of test data.
A preliminary version of this work is presented in [42].

There are two equivalent formulations to the problem.

Max-Cut in a graph: Let G = (V, E) be an undirected graph on n = |V |
vertices and m = |E| edges with edge weights we for e ∈ E. Any bipartition
(S, T ) of the node set V , where S or T are allowed to be empty, defines a cut of
G, i.e., the edge set (S : T ) = {{i, j} ∈ E | i ∈ S, j /∈ S}. The weight w(S : T )
of the cut is defined as

w(S : T ) =
∑

e∈(S:T )

we.

The Max-Cut problem calls for a bipartition (S∗, T ∗) for which w(S∗ : T ∗)
is maximal. It will be convenient to use matrix notation and introduce the
weighted adjacency matrix A = (aij) with

aij = aji = we

for edge e = {i, j} ∈ E, and aij = 0 if {i, j} /∈ E. We also introduce the
Laplacian matrix L associated with A, defined by

L = Diag(Ae) − A,

where e denotes the vector of all ones and Diag(v) is the operator that maps a
n-dimensional vector v into the n-dimensional matrix M , where Mii = vi and
all the off-diagonal components are zero.

If we represent a bipartition (S, T ) by its incidence vector x ∈ {−1, 1}n, with
xi = 1 if i ∈ S and xi = −1 otherwise, then it is easy to show that

w(S : T ) =
1

4
xT Lx.

Hence finding a cut in a graph with maximum weight is equivalent to solving
the following quadratic optimization problem.

(MC) zMC = max{xT Lx : x ∈ {−1, 1}n}.
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Quadratic 0-1 minimization: Given a matrix Q of order n and an n-
dimensional vector c, let

q(y) := yT Qy + cT y. (1)

We consider the following problem.

(QP) min{q(y) : y ∈ {0, 1}n}.

It is not difficult to show that solving (QP) is equivalent to solving (MC)
(see, for instance, [6]).

To this purpose, define

W =

(

0 −(Qe + c)T

−(Qe + c) Q

)

and consider W to be the adjacency matrix of a graph with node set V =
{0, 1, . . . , n}. Let x denote the incidence vector of a cut of this graph with value
k. Without loss of generality we can assume x0 = −1. Then y, defined as

yi =
1

2
(xi + 1), 1 ≤ i ≤ n,

is a solution of (QP) with objective value −k.
Conversely, let L be the Laplace matrix of a given graph and

L =

(

l11 LT
12

L12 L22

)

where L22 is a (n − 1) × (n − 1) matrix. Let y be a solution of (QP) with
Q = −L22 and c = L12 + L22e with value q(y). Then, x defined by

x1 = −1, xi = 2yi−1 − 1, 2 ≤ i ≤ n

is a solution of (MC) with objective value −q(y).

2 A Generic Branch-and-Bound Scheme for (MC)

Even though the description of a Branch-and-Bound (B&B) scheme is rather
simple, and can be found in virtually any textbook on enumerative methods
for NP-hard problems, we summarize the key features of this procedure. We
do this because we are going to compare several different B&B approaches to
solve (MC). In order to explain how these approaches differ from each other,
we need to describe the basic principle as it is relevant for our purposes. The
development of the machinery for linear optimization based B&B has reached
a high degree of sophistication, see for instance [2] for a recent summary on
branching rules. There are also efficient implementations available, for instance
ABACUS [18] and SCIP [1].

The basic step of a Branch-and-Bound procedure is to decompose an instance
into two smaller ones where one of the binary decisions involved in the problem
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is already taken. In particular, to make such a decomposition, we follow a very
simple approach and subdivide the set of feasible solutions S = {−1, 1}n by
selecting two vertices i and j and considering the two sub problems

Sjoin := {x ∈ {−1, 1}n : xi − xj = 0},

Ssplit := {x ∈ {−1, 1}n : xi + xj = 0}.

In the first case, i and j are forced to stay in the same set of the partition (we
will say that i and j are forced to be joined), while in the second case they
must be in separate sets (we will say that i and j are forced to be split). A
nice feature of Max-Cut allows us to optimize over both these sets by solving
again a Max-Cut problem but this time on two graphs of size n− 1. In the first
case the problem is equivalent to finding a maximum cut in a graph obtained
from the original one by identifying the two nodes i and j, by removing the
loop edge possibly created, and by replacing each pair of parallel edges e and f
resulting from the identification with a single edge having weight we + wf . The
new graph has n − 1 nodes. Each of its cuts corresponds to exactly one cut of
the original graph and the two cuts have the same weight.

In the second case we first apply the following linear transformation to the
problem:

x̃ = Njx, (2)

where Nj is the identity matrix with the sign of the j-th diagonal component
changed to -1. After the transformation, Problem (MC) becomes

max{x̃T L̃x̃ | x̃ ∈ {−1, 1}n}, (3)

where L̃ = NjLNj . It is easy to verify that x̃T L̃x̃ = xT L′x + 4s, where L′ is
the Laplacian matrix corresponding to the weighted adjacency matrix NjANj

and s is the weight of the cut defined by the bipartition ({j} : V \ {j}), i.e.,
s =

∑

kj∈E akj . Therefore, solving (3) amounts to solving a Max-Cut instance
on a graph obtained from the original graph by flipping the sign of the weights
of the edges incident with node j. After having applied the transformation (2),
the set Ssplit is represented by Ssplit := {x̃ ∈ {−1, 1}n : x̃i − x̃j = 0}, so like in
the first case, the problem is equivalent to finding a maximum cut in a graph
obtained from the original one (but with the sign of some edge weights flipped)
by identifying the two nodes i and j.

Every node of the enumeration tree associated with the B&B process is fully
characterized by two sets Fjoin and Fsplit containing the pairs {i, j} of nodes
for which the constraints xi − xj = 0 and xi + xj = 0, respectively, are active.
Therefore, by (L, Fjoin, Fsplit) we denote the problem

max xT Lx

(L, Fjoin, Fsplit) s.t. xi − xj = 0, for {i, j} ∈ Fjoin

xi + xj = 0, for {i, j} ∈ Fsplit.

Note that the edges whose endpoints are the pairs in Fjoin ∪ Fsplit form an
acyclic graph.
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In order to complete the definition of the B&B process, given an instance
of (MC) through the matrix L and the two sets Fjoin and Fsplit, we need the
following three procedures.

1. Upper Bound. The bounding procedure

zub = upper-bound(L, Fjoin, Fsplit)

determines an upper bound zub on the optimal value zMC of (MC) for cost
matrix L under the constraints defined by the two sets Fjoin and Fsplit (we
have seen that this problem is a (MC) on a graph with n−|Fjoin|−|Fsplit|
nodes).

2. Heuristic. We also need to be able to produce some (good) feasible solution
xf with value zf = xT

f Lxf (hopefully) close to zMC for the problem of
the previous point:

xf = feasible-solution(L, Fjoin, Fsplit)

3. Branching Pair Selection. Finally, a branching strategy to determine a
pair {i, j} of vertices to be split or joined is needed.

Using these three ingredients, we can summarize a generic B&B approach
for (MC) in the following scheme.

Generic Branch-and-Bound Algorithm for (MC)

input: L symmetric n × n matrix
output: x ∈ {−1, 1}n optimal solution
initialize:

zub = upper-bound(L, ∅, ∅); (initial upper bound)
xbk = (1, . . . , 1)T ; (initial cut vector)
zbk = xT

bkLxbk; (best known (bk) solution value)
Q = {(zub, (L, ∅, ∅))}; (problem list)

while Q 6= ∅
remove problem (z, (L, Fjoin, Fsplit)) from Q having z maximal;
compute:

zub = upper-bound(L, Fjoin, Fsplit);
xf = feasible-solution(L, Fjoin, Fsplit);

if xT
f Lxf > zbk then

update (zbk, xbk);
remove all problems (z′, (L, F ′

join, F ′
split)) from Q with z′ < zbk;

if zbk < zub then

determine the branching pair {i, j} for the problem (z, (L, Fjoin, Fsplit));
set F ′

join = Fjoin ∪ {{i, j}} and F ′
split = Fsplit ∪ {{i, j}};

add (zub, (L, F ′
join, Fsplit)) and (zub, (Fjoin, F ′

split)) to Q;

endwhile

return xbk;
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Contrary to linear optimization based B&B, where branching is a critical
issue (see for instance [2]), we concentrate on the bounding procedure as this
will turn out to be the only nontrivial part. This is also the distinguishing
feature of most of the existing methods to solve (MC), so we first summarize
the various ways to get bounds on (MC) in the following section. The bounding
procedure used in our algorithm will then be described in detail in Section 4.

Finding good feasible solutions can be done routinely in our case, as any
vector x ∈ {−1, 1}n is feasible. We will briefly touch this issue in Section 5.2.
The branching strategy will be described in some detail in Section 5.1. Here we
follow essentially the ideas outlined in [27].

3 Some Solution Approaches and their Limits

In this section we recall the most popular and the most recent methods for
solving our problem of interest. We sketch the algorithms and summarize their
limits. A survey of techniques developed before 1980 can be found in [24].

3.1 LP based relaxations

The solution of (MC) can be found, in principle, by solving a linear program. To
express the objective with a linear function we have to represent every solution
of the problem with the incidence vector of a cut. In particular, if K is a cut of
G, its incidence vector χK ∈ {0, 1}m is such that its component χK

e is equal to
1 if e ∈ K and is equal to zero otherwise. The cut polytope CUT(G) associated
with G is the convex hull of the incidence vectors of all cuts of G. Problem
(MC) can now be written as

(MC) zMC = max{4wT s : s ∈ CUT(G)}, (4)

where w is the vector of the weights on the edges. Unfortunately, the constraint
set of (4) has a number of inequalities that is way too large to be solved with
current LP technology even for graphs of small size. However, by replacing
CUT(G) in (4) with an LP relaxation, i.e., by any (more manageable) polytope
P containing CUT(G), we get an upper bound on zMC that can be used in a
B&B scheme. Usually, it is required that an integral point contained in P is
always the incidence vector of a cut of G. If this is the case, we call P a valid
IP formulation and (4) can be replaced by the following integer linear program:

zMC = max{4wT s : s ∈ P, s integral}.

The most used relaxation of CUT(G) is given by the following system of in-
equalities defining the so-called semimetric polytope M(G) of the graph G:

∑

e∈F se −
∑

e∈C\F se ≤ |F | − 1 C ∈ C, F ⊆ C, |F | odd

0 ≤ se ≤ 1 e ∈ E,
(5)

where C is the set of all cycles of G, see for instance [5] or [17]. The inequalities of
the first set are called the cycle inequalities and are non-redundant (and actually
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facet defining) if for C we take the set of all chordless cycles. The inequalities
of the second set are non-redundant (and facet defining) if E is replaced by the
set of all edges of G that are not contained in a triangle.

If the graph is complete, the (non-redundant) system (5) becomes

sij + sik + sjk ≤ 2
sij − sik − sjk ≤ 0

−sij + sik − sjk ≤ 0
−sij − sik + sjk ≤ 0















for all triangles i < j < k of G (6)

While there are O(n3) triangles, there are in general exponentially many cycle
inequalities. However, in [5] a polynomial time algorithm is given that solves
the separation problem for (5), i.e., the problem to find, for any given point
s̄ ∈ R

m, a cycle inequality violated by s̄ or show that no such an inequality
exists.

The number of inequalities of (5) (or of (6)) is too large to be explicitly
represented in the LP formulation needed to compute the upper bound. The
polynomial time separation algorithm, however, can be effectively used in the
following cutting-plane scheme:

Cutting-Plane Algorithm for (MC)

initialize:

L = {(ℓ, ℓ0)} = initial set of inequalities (typically the bounds on the vari-
ables);

repeat

solve max{wT s : ℓT s ≤ ℓ0 for (ℓ, ℓ0) ∈ L};
let s̄ be the optimal solution;
find a cycle inequality ℓT s ≤ ℓ0 with ℓT s̄ > ℓ0;
if successful then add (ℓ, ℓ0) to L;

until no cycle inequalities are generated;

The optimal solution s∗ of an LP relaxation is used for selecting the branching
pair {i, j}, as well as for finding a feasible (good) solution of (MC). A typical
heuristic that achieves this result amounts to finding a maximum weight span-
ning tree in the graph G where each edge e is assigned the weight |s∗−0.5|. The
edges of the optimal tree with s∗e > 0 are assigned to the resulting cut, while
the other edges are assigned to the complement of the cut. The assigned edges
unambiguously determine a bipartition (S : T ) and hence a feasible cut.

The optimal solution of an LP relaxation can also be used for fixing variables.
If s∗e = 0 and wT s∗−de < zbk, where zbk is the value of the best known cut in G
and d ∈ R

E(G) is the reduced cost vector, then the variable se has value 0 also
in the optimal solution, consequently se can be fixed to 0. Similarly, if se = 1
and wT s∗ + de < zbk, we can fix the variable se to 1. Furthermore, we can also
fix the variables associated with all the edges that belong to a subgraph induced
by the end-nodes of the edges fixed to 0 or 1 as, by the cycle inequalities, their
value is readily determined.
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The techniques described in this section are the basic tools that have been
used, within a B&B scheme of the type described before, in all the computational
studies based on LP relaxations (see, e.g., [35] for a recent survey on these
methods). The bound obtained by optimizing over the semimetric polytope
is, in general, not very strong. On the other hand, the cut polytope has been
extensively studied and several families of valid and facet defining inequalities
have been characterized (see, e.g., [17] for an extensive survey). Nevertheless
most of these results concern the case when the graph G is complete. For the
case of a general graph only few facet inducing inequalities are known besides
(5). Moreover, it seems very difficult to extend the inequalities for a complete
graph to the general case, as complex projection operations would be involved. A
possible solution to overcome some of these difficulties, at least for very sparse
graphs, is suggested in [30] where the separation procedures are applied to a
projection of the fractional point and then the violated inequalities found are
lifted up to the original space. This technique, however, was never experimented
with so far in actual computations.

The most successful results of the LP relaxations have been obtained for
the computation of the state of minimum energy for spin glasses described by
the Ising model. The graphs related to these problems are toroidal grids, thus
very sparse. For these type of instances the LP based approach appears to be,
by far, the method of choice. Choosing the weights randomly from a Gaussian
distribution, in [15] the solutions of instances up to 22 500 nodes are reported.
For instances with ±1 objective function coefficients drawn from a uniform
distribution, solutions are reported for sizes up to 12 100 nodes in [4].

Limits of this method. The computational results presented in [6] and [4]
show, that graphs of any density up to n = 30 nodes can be computed in
reasonable time. But with an increasing number of nodes, the limits on the
density of the graphs decreases rapidly. Graphs with n = 100 nodes can only
be solved, if the edge density is at most 20%.

Besides the lack of additional inequalities that would strengthen the semimet-
ric relaxation, there is another drawback that prevents LP based methods to
attack graphs of moderate density. When in the above cutting-plane algorithm
a simplex or a barrier algorithm is used to solve each LP, computation times
can really blow up: for example, [20] reports computation times of more than
one hour for complete graphs of 150 nodes just to solve the LP relaxation. A
different way to compute the relaxation is to keep, as explicit constraints, only
a small subset of the inequalities (5) and to dualize all the others that would
be used by the cutting-plane algorithm. In [4] only the box constraints of the
variables are kept as explicit constraints and the volume algorithm is used to
solve the Lagrangian dual.

Yet another approach is proposed in [20]. It is assumed that the graph has a
node r adjacent to all other nodes. If this is not the case, 0-weighted edges are
added to the graph to meet the assumption. Then the following subset of (5) is
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considered:

srj + srk + sjk ≤ 2
srj − srk − sjk ≤ 0

−srj + srk − sjk ≤ 0
−srj − srk + sjk ≤ 0















for all {j, k} ∈ E, r 6= j < k 6= r. (7)

These inequalities define the r-rooted metric polytope of G (Mr(G)). The opti-
mization of a linear function over Mr(G) can be done efficiently, as it amounts
to solving a maximum flow problem in a graph derived from G. Therefore, the
inequalities (7) are kept explicitly in the constraint set while all the other cycle
inequalities are dualized. The Lagrangian dual is then solved with a bundle
method pretty much in the same way as described in Section 4.1. In [20] time
savings of up to two orders of magnitude with respect to simplex or barrier
based cutting-plane algorithms are reported for graphs of up to 150 nodes. The
primal and dual infeasibilities of the solutions are comparable with those ob-
tained with the simplex or the barrier algorithm. Experiments to obtain exact
solutions for (MC) using this approach have not been carried out. However, de-
spite the remarkable improvements in the computation time of the LP bound,
on dense graphs it is not expected that, at present, LP based relaxations can
compete with the techniques described in the following sections.

3.2 The basic SDP relaxation

An equivalent formulation of (MC) is given by

zMC = max{tr LX : diag(X) = e, rank(X) = 1, X � 0}, (8)

(see, e.g., [41]), where X is an n × n real matrix, trA denotes the trace of the
matrix A, i.e., the sum of its diagonal elements, and diag(A) maps a matrix A
of order n into the n-dimensional vector made of its diagonal components. It
is easy to see that if x is the incidence vector of an (S : T ) bipartition, then
the matrix xxT satisfies all the constraints in (8). (Remember that x is a ±1
incidence vector.) Moreover, if s ∈ R

m is the incidence vector of the cut defined
by (S : T ) and Xij denotes [xxT ]ij , then we have

sij =
1 − Xij

2
. (9)

By dropping the constraint that imposes X to have rank one, we obtain the
following semidefinite relaxation of (MC):

zSDP = max{tr LX : diag(X) = e, X � 0}. (10)

This is a semidefinite program (SDP) in the matrix variable X of order n, and
n equality constraints. Its dual form

min{eT u : Diag(u) − L � 0} (11)

9



was introduced by Delorme and Poljak [16] as the (equivalent) eigenvalue opti-
mization problem

min{nλmax(L − Diag(u)) : u ∈ R
n, uT e = 0}, (12)

where λmax(A) is the largest eigenvalue of the matrix A. The primal version
(10) can be found in [40]. In [23] it is shown that this relaxation has an error
of no more than 13.82%, i.e.,

zSDP

zMC
≤ 1.1382,

provided there are non-negative weights on the edges.
The model (12) is used in [39] as the bounding procedure in a Branch-and-

Bound framework.

Limits of this method. This basic SDP bound can be computed efficiently
by interior point methods. However, the bound is too weak to be successfully
used within a Branch-and-Bound framework, since the progress at each node
is disappointingly small and the number of B&B nodes becomes rather large,
already for medium sized problems. Graphs up to n = 50 nodes can be solved
quite efficiently to optimality, but for larger n a solution in reasonable time can
only be obtained, for instances where the initial gap is already very small.

3.3 Convex quadratic relaxations

Billionnet and Elloumi [11] consider the following relaxation of (QP). Define for
any vector u ∈ R

n the Lagrangian

qu(y) := q(y) +
∑

i

ui(yi − y2
i ) = yT (Q − Diag(u))y + (c + u)T y

An equivalent problem to (QP) is

(QPu) min{qu(y) : y ∈ {0, 1}n}.

Relaxing the integrality constraints in (QPu), gives the lower bound β(u),

β(u) = min{qu(y) : y ∈ [0, 1]n}.

If the vector u is chosen, such that Q−Diag(u) is positive semidefinite, β(u)
is obtained by solving a convex quadratic problem, which can be done efficiently.
Now, u∗ is chosen to maximize β(u). This gives the “optimal” lower bound β∗,
i.e.,

β∗ = β(u∗) = max{β(u) : (Q − Diag(u)) � 0, u ∈ R
n}.

In [11] it is observed that the dual to this SDP is essentially equivalent to the
basic Max-Cut relaxation (10), see Section 3.2.

The solution of problem (QPu) (or (QPu∗), respectively) can be derived
by using a solver for convex quadratic 0-1 problems, i.e., a Branch-and-Bound
algorithm using β(u), the continuous relaxation of QPu, as a bound.

10



The computational effort for this algorithm can be summarized as follows:

1. Preprocessing phase: solve an SDP to obtain a vector u∗ and a bound β∗.

2. Use a mixed integer quadratic problem solver for solving problem (QPu∗).
Even though the computation of the bounds is very cheap, the number of
nodes in the Branch-and-Bound tree typically exceeds 100 000 for problems
of n = 100 variables.

Limits of this method. Quadratic problems with some special structure can
be solved up to n = 100 variables. But the method is not capable of solving
certain classes of Max-Cut instances of this size (for example, graphs with edge
weights chosen uniformly from {−1, 0, 1}).

3.4 SDP with cutting planes

The SDP relaxation introduced in Section 3.2 can be strengthened by requiring
X to satisfy the triangle inequalities. By applying (9) to the triangle inequalities
(6) we obtain

Xij + Xik + Xjk ≥ −1
Xij − Xik − Xjk ≥ −1

−Xij + Xik − Xjk ≥ −1
−Xij − Xik + Xjk ≥ −1















for all i < j < k.

We collect these inequalities symbolically as

A(X) ≤ b,

where A is an operator mapping symmetric matrices of dimension n into R
m,

m = 4
(

n
3

)

with the adjoint operator AT . Hence we get the strengthened SDP
relaxation

zmc−met = max{tr LX : diag(X) = e, A(X) ≤ b, X � 0}. (13)

This is again a semidefinite program, but it has 4
(

n
3

)

triangle inequalities in
addition to the n equations fixing the main diagonal of X to e. The computa-
tional effort to solve this problem is nontrivial, even for small n like n ≈ 100,
see, e.g., [27].

Helmberg and Rendl [27] apply this semidefinite relaxation with cutting
planes (solved by an interior point code) in a Branch-and-Bound scheme. They
consider the basic semidefinite relaxation (10), strengthened by some hyperme-
tric inequalities. Inequalities are added while solving the relaxation (i.e., after
some Newton steps), as well as after the exact solution of the relaxation has
been obtained. Then the optimization process is restarted again.

Later on, Helmberg [25] improved this algorithm by fixing variables. In [26]
this approach is further refined.
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Although the relaxation produced very tight bounds, the results of the
Branch-and-Bound code remained below the expectations of the authors. The
number of nodes in the B&B tree is very small, but the computation time per
node may be rather large.

Limits of this method. Most graphs with up to n = 50 nodes can be solved
in the root node of the Branch-and-Bound tree. Instances up to the size n = 100
can still be solved, but the computational effort may be very high. For graphs
with more than 100 nodes this algorithm is too slow to be practical.

3.5 Further approaches

Branch-and-Bound with second-order cone programming. Kim and
Kojima [32], and later on Muramatsu and Suzuki [36] use a second-order cone
programming (SOCP) relaxation as bounding procedure in a Branch-and-Bound
framework to solve Max-Cut problems. However, the basic SDP relaxation (see
Section 3.2) performs better than their SOCP relaxation and the method works
only for sparse graphs.

Limits of this method. The algorithm is capable of solving very sparse
instances only. The largest graphs for which solutions are reported are random
graphs (weights between 1 and 50) of n = 120 nodes and density d = 2%, and
graphs that are the union of two planar graphs up to n = 150, d = 2%.

Branch-and-Bound with preprocessing. Pardalos and Rodgers [37], [38]
solve (QP) by Branch-and-Bound using a preprocessing phase where they try
to fix some of the variables. The test on fixing the variables is based on the
gradient of (1), which reads 2Qy+c, and exploits the fact that if y∗ is the global
solution of (QP), then y∗ is also optimal for the linear program

min{(2Qy∗ + c)T y : y ∈ {0, 1}n}.

Limits of this method. Similar to the cutting-plane technique in [6], dense
instances up to n = 30 and sparse instances up to n = 100 can be computed.
Special classes of instances can be solved efficiently up to n = 200. These
instances have off-diagonal elements in the range [0, 100] and diagonal elements
lying in the fixed interval [−I, 0], for the case I = 63 (the density is 100%).
For other values of I, the problem may become much more difficult to solve.
However, the method fails for general dense problems already with n = 50
variables.
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4 The Bounding Procedure in our Branch-and-
Bound Framework

In the previous section we described the most popular bounding procedures for
Max-Cut, along with their limitations. In this section we explain the bounding
procedure used in our approach. The explanation of step 2 (heuristics) and step
3 (branching rules) can be found in the subsequent section.

We are going to use the semidefinite relaxation (13). Instead of solving
this relaxation with a limited number of inequality constraints by interior point
methods, as done in [27], we use the bundle approach suggested in [19].

The basic semidefinite relaxation (10) can be solved with reasonable effort
for rather large problem sizes. However, using this relaxation as bounding pro-
cedure in a Branch-and-Bound framework turns out to be too weak. On the
other hand, solving the strengthened relaxation (13) directly is intractable for
problems of size n ≥ 100, since the number of inequalities is roughly 2

3n3.
As already mentioned in Section 3.4, [27] developed a machinery for getting

solutions of this relaxation by using an interior point algorithm applied to a lim-
ited number of triangle inequalities. The number of inequalities to be included,
say m, strongly affects the computational effort, since a dense matrix of order
m has to be stored and factorized throughout the algorithm. This puts a severe
limit to the number m of triangle inequalities to be included explicitly.

Although the decrease of the bound after the inclusion of some of the triangle
inequalities is significant, the computational overhead is prohibitive for larger
instances. Subsection 4.2 describes the situation and compares it to the method
used in the Branch-and-Bound framework of our algorithm.

Instead of maintaining a limited set of triangle inequalities explicitly in the
SDP, [19] apply the bundle method to the Lagrangian dual, obtained by du-
alizing the triangle constraints. We briefly describe the relevant details of this
approach, and our modifications for use in the Branch-and-Bound setting.

4.1 Using Lagrangian duality for solving the strengthened
SDP relaxation

The set E := {X : diag(X) = e, X � 0} defines the feasible region of (10).
Therefore, (13) can be written compactly as

zmc−met = max{〈L, X〉 : X ∈ E ,A(X) ≤ b}. (14)

Let us introduce the Lagrangian

L(X, γ) := 〈L, X〉 + γT (b −A(X)) (15)

and the dual functional

f(γ) := max
X∈E

L(X, γ) = bT γ + max
X∈E

〈L −AT (γ), X〉. (16)
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The problem now consists in minimizing f over γ ≥ 0:

zmc−met = min
γ≥0

f(γ).

The function f is well-known to be convex but non-smooth. Evaluating f for
some γ ≥ 0 amounts to solving a problem of type (10), which can be done easily
for problem sizes of our interest. We use a primal-dual interior-point method to
solve it, which also provides an optimality certificate Xγ , uγ (optimal solutions
to (10) and (11)). The primal matrix Xγ will turn out to be useful in our
algorithmic setup. We have, in particular that

f(γ) = L(Xγ , γ).

Moreover, a subgradient of f at γ is given by b −A(Xγ).
Dualizing all triangle constraints would result in a dual problem of dimen-

sion roughly 2
3n3, we prefer a more economical approach where inequalities are

included only if they are likely to be active at the optimum.
Let I be a subset of the triangle inequalities, hence AI(X) ≤ bI . We also

write γI for the variables dual to the inequalities in I. Setting the dual variables
not in I to zero, it is clear that for any I and any γI ≥ 0, we have

f(γI) ≥ zmc−met ≥ zMC ,

hence f(γI) is an upper bound on the optimal value of Max-Cut.

Approximating the value zmc−met therefore breaks down into the following
two independent tasks:

1. Identify a subset I of triangle inequalities.

2. For a given set I of inequalities, determine an approximate minimizer
γI ≥ 0 of f .

The second step can be carried out with any of the subgradient methods for
convex non-smooth functions. For computational efficiency we use the bundle
method with a limit on the number of function evaluations.

Carrying out the first step is less obvious. We are interested in constraints
which are active at the optimum, but this information is in general not available.
Therefore we use the optimizer XγI

, corresponding to an approximate minimizer
γI of f , and add to the current set I of constraints the t triangle inequalities
most violated by XγI

. (Here t is a parameter which is dynamically chosen.)
Thus we can identify promising new inequalities to be added to I.

A dual multiplier close to zero is an indication that the constraint is unlikely
to be binding at the optimal solution. Therfore, we remove any constraint from I
where the dual multiplier is close to zero. We iterate this process of selecting and
updating a set of triangle inequalities, and then solving the respective relaxation,
as long as the decrease of the upper bound is sufficiently large. An informal
description of our bounding procedure therefore goes as follows.
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The Bounding Procedure

solve (10) yielding X and an upper bound f(0);
select a set I of triangle inequalities violated by X ;
while upper bound decreases significantly

use the bundle method to obtain an approximate minimizer γI of f on I;
remove constraints from I where γi ≈ 0;
add new constraints to I, violated by XγI

;
endwhile

Remarks:

• In addition to the triangle inequalities, other constraints could be used to
tighten the relaxation (see [27]). However, using only triangle inequalities led
to a satisfactory behavior of our algorithm and therefore we abandoned the
option of considering other inequalities in favor of computational efficiency and
simplicity.

• The (exact) minimizer γ∗ ≥ 0 of f(γ) is difficult to reach using the bundle
method. This is illustrated in Figure 1 and will be explained in more detail in
Section 4.2. In particular, see also [19], the improvement in the minimization
process of f is biggest in the first iterations, with a strong tailing-off effect.
Detecting this phenomenon is useful in a Branch-and-Bound setting, where early
termination of the bound computation can provide a substantial overall speed-
up.

• Finally, we point out again that the main computational effort in the bound-
ing process is solving (10).

4.2 Comparing two methods for solving the strengthened
SDP relaxation

As reported in [19], this approach provides the currently strongest bounds at
reasonable computational cost for Max-Cut. The number of function evaluations
(i.e., solving (10)) is surprisingly small.

To illustrate the practical behavior of this algorithm compared to the SDP
based method of [27], we plot in Figure 1 the decrease of the bound over time for
both approaches. We took an instance from the Beasley collection (beasley250-
6) with n = 250, see Section 7.2. The optimal value is zMC = 43 931 (bottom
line in the figure). We also computed zmc−met and found that zmc−met ≤ 44 095
(dashed horizontal line). The topmost curve in the figure shows the progress of
the upper bound as more and more constraints are added and the resulting SDP
is solved by interior-point methods. The second curve shows the development
of the upper bound during the iterative scheme described above. It should be
clear that this variant is substantially more efficient in approaching zmc−met.
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Figure 1: Beasley graph with n = 250. The optimal value of Max-Cut is 43 931,
zmc−met ≈ 44 095.

The figure also suggests that the true value of zmc−met is hard to reach for
both methods. Finally, we also see that there is some room to experiment with
early termination of the iterations: in case it is clear that the value of the best
cut can not be reached (in a subproblem of the Branch-and-Bound process), it
may be worthwhile to stop iterating and generate new subproblems (thereby
saving computation time). On the other hand, carrying on with the iterative
process may be useful in case the current progress of the bound suggests that the
value of the best known cut is within reach, so that the branching node under
consideration may be eliminated without generating additional branching nodes.
In our implementation, we applied a dynamic strategy to control the number of
iterations.

5 Branching Rules and Heuristics

In this section we explain how we carry out step 2 (heuristics) and step 3
(branching rules) of the generic Branch-and-Bound algorithm of Section 2.
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5.1 Branching strategies

There are several natural choices for a pair i, j of vertices for branching.

Easy first: A first idea is to branch on node pairs where the decision seems to
be obvious. We choose i and j such that their rows of X are ‘closest’ to a {−1, 1}
vector, i.e., they minimize

∑n
k=1(1 − |Xik|)2. We may assume, that for these

two very well articulated nodes the value |Xij | is also very large. Setting Xij

opposite to its current sign should lead to a sharp drop of the optimal solution
in the corresponding sub tree. Hoping that the bound also drops as fast, we
should be able to cut off this sub tree quickly. This rule has been introduced in
[27] and called R2.

Difficult first: Another possibility for branching is, to fix the hard decisions
first. We branch on the node pair {i, j} which minimizes |Xij |. This means that
we fix the most difficult decisions and hope that the quality of the bound gets
better fast and that the sub problems become easier. Following [27] we call this
rule R3.

Strong branching: Motivated from linear programming based Branch-and-
Bound, one can also experiment with strong branching, meaning that we do a
forecast on potential branching edges in order to branch on the edge that seems
to bring the best progress, see for instance [2]. Ideally, we might even be able
to fathom a node (before we actually added it to the queue Q), i.e., we would
only have to add the other node to the branching tree.

If we consider the decision to join nodes i and j, we would have to solve the
SDP

zi∼j = max{trLX : X ∈ E ,A(X) ≤ b, Xij = 1}. (17)

It turns out that this problem can be approximately solved using our general
bounding procedure by simply taking the Lagrangian dual with respect to the
new equation Xij = 1. Unfortunately, the computational effort to restart the
optimization is substantially bigger than in LP-based B&B. Our various compu-
tational experiments with strong branching showed that the overall number of
nodes could be reduced, but the overhead in computation time led to an overall
inferior performance.

Depending on the class of problems, either rule R2 or R3 was more efficient.

5.2 Generating feasible solutions

Generating feasible solutions is done iteratively, basically in three steps:

1. Apply the Goemans-Williamson hyperplane rounding technique [23] to
the primal matrix X obtained from solving the SDP during the bundle
iterations. This gives a bipartition-vector x̄.
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2. The cut x̄ is locally improved by checking all possible moves of a single
vertex to the opposite set of the partition. This gives a new bipartition-
vector x̃.

3. Move the rounding matrix X towards a ‘good vertex’ by using a convex-
combination of X and x̃x̃T . With this new matrix go to 1, and repeat as
long as a better cut is found.

The last step of biasing X towards a good cut matrix x̃x̃T turned out to be
quite helpful in practise. Using this heuristic, the optimal cut is already found
at the root node of the B&B tree for most of the instances. The computational
effort of this step is neglegible, compared to the bound computation.

6 Random Data for (MC) and (QP)

In this section some random data for presenting numerical results of our algo-
rithm are specified. All the data sets can be downloaded from

http://biqmac.uni-klu.ac.at/biqmaclib.html.

These instances are taken from various sources. Here we provide some of the
characteristics of the data sets.

6.1 Max-Cut instances

6.1.1 Rudy-generated instances.

The first group of instances follows [27] and consists of random graphs (of spec-
ified edge density) with various types of random edge weights. All graphs were
produced by the graph generator Rudy [43]. For a detailed description and a
list of the Rudy-calls the reader is referred to [44]. We generated ten instances
of size n = 100 of the following types of graphs:

G0.5: unweighted graphs with edge probability 1/2.

G−1/0/1: weighted (complete) graphs with edge weights chosen uniformly from
the set {−1, 0, 1}.

G[−10,10]: graphs with integer edge weights chosen from the interval [−10, 10]
and density d ∈ {0.5, 0.9}.

G[0,10]: graphs with integer edge weights chosen from the interval [−10, 10]
and density d ∈ {0.5, 0.9}.

6.1.2 Applications in Statistical Physics: Ising instances.

We also consider test-problems of Frauke Liers [personal communication, 2005]
from applications in Statistical Physics. Two classes of instances are considered:
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1. two- and three-dimensional grid graphs, with Gaussian-distributed weights
(zero mean and variance one).

2. dense Ising instances (one dimensional Ising chain), i.e., complete graphs
with a certain structure. These instances are obtained in the following
way: all nodes lie evenly distributed on a cycle. The weights w of the edges
depend on the Euclidean distance between two nodes and a parameter σ,
such that the following proportion holds:

wij ∼
ǫij

(rij)σ

where ǫij is chosen according to a Gaussian distribution with zero mean
and variance one and rij is the Euclidean distance between nodes i and
j. In our experiments the exponent σ ∈ {2.5, 3}. For a more detailed
study of the one dimensional Ising chain we refer to the dissertation of
Frauke Liers [34] and the references therein.

6.2 Instances of (QP)

Pardalos and Rodgers ([37]) have proposed a test problem generator for Uncon-
strained Quadratic Binary Programming. Their procedure generates a symmet-
ric integer matrix Q to define the objective function for (QP), with the linear
term c represented by the main diagonal of Q, and has several parameters to
control the characteristics of the problem, namely:

n: the number of variables

d: the density, i.e., the probability that a nonzero will occur for any off-
diagonal coefficient (qij)

c−: the lower bound of the diagonal coefficients (qii)

c+: the upper bound of the diagonal coefficients (qii)

q−: the lower bound of the off-diagonal coefficients (qij)

q+: the upper bound of the off-diagonal coefficients (qij)

s: a seed to initialize the random number generator

qii drawn from a discrete uniform distribution in the interval [c−, c+], i =
1, . . . , n
qij = qji drawn from a discrete uniform distribution in the interval [q−, q+],
1 ≤ i < j ≤ n.

Several test problems generated this way are provided in the OR-library [7]
or [8]. We have chosen all the problems of sizes of our interest, which are the
data sets bqpgka, due to [21] and bqp100 and bqp250, see [9].

Furthermore, in [11] the sets c and e of bqpgka are extended. We call these
instances bqpbe.
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The characteristics of the test problems are as follows:

bqpgka

n d c− c+ q− q+

bqpgka, set a 30, . . . , 100 0.0625, . . . , 0.5 −100 100 −100 100
bqpgka, set b 20, . . . , 120 1.0 0 63 −100 0
bqpgka, set c 40, . . . , 100 0.1, . . . , 0.8 −100 100 −50 50
bqpgka, set d 100 0.1, . . . , 1.0 −75 75 −50 50
bqpgka, set e 200 0.1, . . . , 0.5 −100 100 −50 50

bqpbe

Size ranging from n = 100 to n = 250 nodes; density ranging from d = 0.1
to d = 1.0; c− = −100; c+ = 100; q− = −50 and q+ = 50.

beasley

Two sizes of n = 100 and n = 250 nodes; d = 0.1; c− = −100; c+ = 100;
q− = −100 and q+ = 100.

6.3 Comparing (MC) and (QP) instances

Looking at the existing computational studies on Max-Cut, it is striking that all
approaches seem to have a harder time with (MC)-type instances, while (QP)-
type instances look more manageable. This looks like a paradox since, as it was
shown in Section 1, (MC) and (QP) are equivalent.

We will now take a closer look at this issue. We believe that one possible
reason of the difference comes from the way people tend to construct reasonably
difficult instances to test their algorithms.

For those who work with MC-type instances it is quite natural to consider
as a typical difficult problem the one given by a random graph with edge weight
= 1 and an edge probability = 1

2 .
In the (QP) case, the situation is less clear. If all the data are nonnegative,

then the optimum is x = 0. If all the data are nonpositive then the optimum
is x = e. Therefore, it makes sense (as is done by the Pardalos and Rodgers
generator ([37])) to generate instances where the data are randomly chosen with
mean = 0.

In Figure 2 we compare two ‘random’ instances from both classes. To be
specific, we generated a random graph (edge weight = 1, edge probability = 1

2 )
on n = 25 vertices, and a random instance of QP of equivalent size (all entries
in Q and c are randomly drawn from [−100, 100]). We enumerated all solutions
(roughly 16×106 of them), sorted them by objective value, and normalized these
values to lie in the interval [0, 1]. The figure clearly shows that the random (MC)
instance should be much harder for maximization, as many more solutions are
within only a tiny fraction of the optimal solution. In the figure on the right
we zoom the picture to the 10 000 best solutions in both cases, and here the
difference becomes even more evident.
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Figure 2: Random data (n = 25), normalized cost values for an unweighted
random graph and a random QP instance (left plot), and zooming in to the
10 000 best solutions (right plot).

Extrapolating from this small example to larger ones, it should be clear that
the (QP) instances are more or less symmetric with respect to maximization
and minimization, while the (MC) instances have ‘high mass’ of good solutions
concentrated around the maximal solution. Identifying (and proving) global
optimality in the latter case should therefore be expected to be much more
difficult than in the (QP) case. This is confirmed in all our computational
experiments reported in the following section. It is also consistent with the
computational results published in the literature.

Finally, this figure also suggests that having a small initial gap does not
necessarily imply that the problem can be solved ‘easily’. This will be illustrated
also in the computational results given in Table 2, where the initial gap and the
computation times are provided.

7 Numerical Results

We implemented the algorithm in C. It is publicly usable as “Biq Mac” – a
solver for binary quadratic and Max-Cut problems at

http://biqmac.uni-klu.ac.at/.

If not stated otherwise, test runs were performed on a Pentium IV with 3.6
GHz and 2 GB RAM, operating system Linux. For a more detailed study of the
numerical results the reader is referred to [44].

Before we present our computational results, we give in Table 1 a rough
overview of the capability of the approaches presented in Section 3. We use the
following abbreviations.

LP: Linear programming based Branch-and-Bound, see Section 3.1.
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V: Linear programming combined with the volume algorithm, see Sec-
tion 3.1.

EO: An exact approach using eigenvalue optimization based on (12),
see Section 3.2.

QP: The recent work of Billionnet and Elloumi [11] based on convex
quadratic optimization, see Section 3.3.

SDPMET: SDP combined with triangle inequalities and solving (13) by an
interior point algorithm, see Section 3.4.

PP: Method of Pardalos and Rodgers [37], see Section 3.5.

LP V EO QP SDPMET PP Biq Mac

quadr 0-1, n = 100, d = .1 ✔ ✔ / ✔ K ✔ ✔

quadr 0-1, n = 250, d = .1 ? ? / / / / K

2-dim. torus, n = 20 × 20 ✔ ✔ / / / ? ®

3-dim. torus, n = 7 × 7 × 7 ✔ ✔ / / / ? K

G0.5, n = 100 / ? / ® ® ? ✔

G−1/0/1, n = 100 / ? ® ® ® ? ✔

Table 1: Who can do what?

We consider different types of instances and use the following symbols. A
✔ means, that the approach can solve instances of this type in a routine way.
A K indicates that one can have (at least) one cup of coffee while waiting for
the solution and maybe there are instances that cannot be solved at all. The ®
suggests to have some holidays and come back in a couple of days to see whether
the job is finished, and the / indicates that the chances for solving the problem
with this method are very low. If we do not know, whether an algorithm can
solve certain classes of instances or not, we indicate this with a question mark.
Most likely, though, we could place / instead of a question mark.

7.1 Numerical results of Max-Cut instances

7.1.1 Rudy-generated instances.

Table 2 lists the computation times (minimum, average and maximum), the
number of nodes (minimum, average, maximum) of the resulting Branch-and-
Bound tree and the relative gap in the root node (minimum, average, maximum).
The branching rule used for these kind of instances is R2.

The average computation time for all kinds of instances is approximately
one hour. Nevertheless, some instances may be solved within minutes whereas
for others it could take more than three hours. We also want to point out that,
for example, the G0.5 instances have a much smaller gap in the root node than
the G−1/0/1 instances, while the number of nodes in the B&B tree is roughly
the same. This means that even if the initial gap is already very small, it can
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time (h:min) nodes in B&B tree initial gap (%)
n d min avg max min avg max min avg max

G0.5

100 0.5 5 50 3:44 65 610 2925 0.48 0.79 1.20
G−1/0/1

100 0.99 7 56 2:31 79 651 1811 3.53 6.03 9.26
G[−10,10]

100 0.5 9 38 1:13 97 435 815 2.94 5.26 8.02
100 0.9 5 57 3:12 51 679 2427 1.63 5.58 8.52

G[1,10]

100 0.5 7 48 2:02 111 576 1465 0.49 0.91 1.21
100 0.9 12 40 1:26 155 464 1007 0.40 0.53 0.62

Table 2: Biq Mac results for Max-Cut problems. For each problem type, 10
instances were solved. Run times on a Pentium IV, 3.6 GHz, 2GB RAM. “initial
gap” indicates the relative gap in the root node of the B&B tree in %.

be hard to identify the optimal solution if there are many solutions close to the
optimal one (as explained in Section 6.3).

The results show that on these classes of instances we outperform all other
solution approaches known so far. The currently strongest results on these
graphs are due to Billionnet and Elloumi [11] (details about their algorithm are
given in Section 3). They are not able to solve instances G−1/0/1 of size n = 100
at all. Also, they could solve only two out of ten instances of G0.5, n = 100.

7.1.2 Applications in Statistical Physics: Ising instances.

As explained in Section 6.1.2, we consider two kind of Ising instances: toroidal
grid graphs and complete graphs.

Instances of the first kind can be solved efficiently by an LP-based Branch-
and-Cut algorithm (see [35]). The computation times of this LP-based method
and of our algorithm are reported in Table 3. As it can be seen, on these sparse
instances the LP-based method outperforms our algorithm. However, we find a
solution within a gap of 1% in reasonable time for all these samples.

The run time of the Branch-Cut-and-Price algorithm ([34]) developed for
the second kind of problems depends strongly on the parameter σ. For σ close
to zero, we have a complete graph with Gaussian-distributed weights. But for σ
chosen suitably large, some of the edges become ‘unimportant’ and the technique
of fixing variables, described in Section 3.1, works very well for these graphs. In
Table 4 the computation times of [34] and our algorithm are given. For σ = 3.0,
roughly speaking we have the same computation times. But for σ = 2.5, the
Branch-Cut-and-Price algorithm already takes more than 20 hours for instances
of size n = 150, whereas our algorithm needs almost similar computation times
as in the σ = 3.0 case.

For both kind of instances we used branching rule R3.
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Problem [35] Biq Mac
number n time time nodes gap (%)
2 dimensional
g10 5555 100 0.15 10.12 1
g10 6666 100 0.14 15.94 1
g10 7777 100 0.18 14.89 1
g15 5555 225 0.44 304.03 3 0.0028
g15 6666 225 0.78 359.87 3 0.0043
g15 7777 225 0.67 346.89 3 0.0165
g20 5555 400 1.70 6690.99 9 0.0611
g20 6666 400 3.50 35205.95 45 0.2489
g20 7777 400 2.61 8092.80 11 0.1245
3 dimensional
g5 5555 125 2.68 18.01 1
g5 6666 125 3.29 24.52 1
g5 7777 125 3.07 26.00 1
g6 5555 216 20.56 280.85 3 0.0032
g6 6666 216 37.74 2025.74 19 0.3648
g6 7777 216 27.30 277.95 3 0.0146
g7 5555 343 95.25 432.71 1
g7 6666 343 131.34 550.12 1
g7 7777 343 460.01 117782.75 243 0.6879

Table 3: Test runs on torus graphs with Gaussian distribution. The Branch-
and-Cut algorithm [35] runs on a 1.8 GHz PC, Biq Mac runs on a Pentium
IV, 3.6 GHz. Times are given in seconds. Column “nodes” lists the number of
nodes in the resulting B&B tree, and column “gap (%)” indicates the relative
gap in the root node of the B&B tree in %.
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Problem [34] Biq Mac Problem [34] Biq Mac
number n time time number n time time
σ = 3.0 σ = 2.5
100 5555 100 4:52 1:36 100 5555 100 18:22 1:32
100 6666 100 0:24 0:34 100 6666 100 6:27 1:06
100 7777 100 7:31 0:48 100 7777 100 10:08 0:47
150 5555 150 2:36:46 4:38 150 5555 150 21:28:39 4:25
150 6666 150 4:49:05 3:55 150 6666 150 23:35:11 5:39
150 7777 150 3:48:41 6:06 150 7777 150 31:40:07 9:19
200 5555 200 9:22:03 10:07 200 5555 200 – 10:05
200 6666 200 32:48:03 18:53 200 6666 200 – 17:55
200 7777 200 8:53:26 22:42 200 7777 200 – 21:38
250 5555 250 21:17:07 1:46:29 250 5555 250 – 3:00:28
250 6666 250 7:42:25 15:49 250 6666 250 – 1:17:04
250 7777 250 17:30:13 57:24 250 7777 250 – 1:10:50
300 5555 300 17:20:54 2:20:14 300 5555 300 – 6:43:47
300 6666 300 10:21:40 1:32:22 300 6666 300 – 9:04:38
300 7777 300 18:33:49 3:12:13 300 7777 300 – 13:00:10

Table 4: Test runs on Ising instances (complete graphs). Branch-Cut-and-
Price [34] runs on a 1.8 GHz PC, Biq Mac runs on a 3.6 GHz PC. Times in
hours:minutes:seconds. The relative gap in the root node of the B&B tree is at
most 0.1%, the number of nodes in the tree ranges from 3 to 139.
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7.2 Numerical results of (QP) instances

In this section we report the results for the instances derived from (QP). Best
known lower and upper bounds for bqpgka and beasley data are reported at
the pseudo-Boolean web-site [12]. Our results are as follows:

bqpgka

Set a. All problems are solved in the root node of the Branch-and-Bound
tree.

Set b. These instances could all be solved, but were extremely challenging
for our algorithm. The reason is, that the objective value in the Max-
Cut formulation is of magnitude 106, and therefore even a relative
gap of 0.1% is not sufficient to fathom the node. However, if we allow
a relative error of at most 0.1%, we can solve all problems in the root
node of the Branch-and-Bound tree.

Set c. Also these instances were solved in the root node of the Branch-
and-Bound tree.

Set d. These instances could be solved within at most 7 minutes.

Set e. The instances with 10, 20, 30 and 40% density could all be solved
within 2 hours of computation time. The instance with density d =
50% has been solved after 35 hours. According to [12], these problems
have not been solved before. The branching rule we used for solving
these instances is R2.

bqpbe

We report the results of [11] and our results in Table 5. As it is shown
in this table, [11] could not solve all out of the ten problems from the
n = 120 variables and 80% density instances on, whereas our method still
succeeded in solving them all. From the instances n = 150, d = 80%,
the convex-quadratic approach failed to solve any instance within their
time limit of 3 hours. We still managed to obtain solutions to all of these
instances (although for one graph it took about 54 hours). We applied
branching rule R2 to solve these problems.

beasley

Solving the 10 problems of size n = 100 can be done in the root node
within one minute. For the set of problems of size n = 250, only two out
of the ten problems have been solved before, as reported by Boros et al.
[12]. For the other eight problems we could prove optimality for the first
time. Eight out of the ten instances were solved within 5 hours, the other
two needed 15 and 80 hours, respectively. Since most of these instances
have been solved for the first time, we report in Table 6 the optimal values
together with the run times, the number of nodes in the B&B tree, and
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[11] Biq Mac
CPU time (sec) CPU time (sec)

n d solved min avg. max solved min avg. max
100 1.0 10 27 372 1671 10 86 178 436
120 0.3 10 168 1263 4667 10 29 162 424
120 0.8 6 322 3909 9898 10 239 1320 3642
150 0.3 1 6789 10 1425 2263 2761
150 0.8 0 – 10 1654 1848 2133
200 0.3 0 – 10 7627 37265 193530
200 0.8 0 – 10 5541 47740 148515
250 0.1 0 – 10 12211 13295 16663

Table 5: Comparison between [11] and Biq Mac. Computation times of the
convex-quadratic algorithm were obtained on a laptop Pentium IV, 1.6 GHz
(time limit 3 hours), our results were computed on a Pentium IV of 3.6 GHz.

the relative gap in the root node (in %). The branching strategy used for
these instances is R3.

Bounds of the beasley and some of the bqpgka data sets have also been
calculated by Boros, Hammer, Sun, and Tavares [13]. They use the so-called
iterated roof dual as bounding routine and report that, applying this bound com-
putation in a Branch-and-Bound framework, they could solve the four sparsest
instances of the bqpgka-d data sets and two of the instances beasley-250.
However, on most instances their bound behaves worse than the basic SDP
bound and therefore, using it within a B&B scheme, might not lead to satisfy-
ing results.

8 Extension to the equipartition problem

Simple modifications can make our algorithm work for solving related problems.
In this section we show such a modification that allows solving the equipartition
problem using Biq Mac.

Consider the problem of bisecting a graph such that the sum of the weights
on the edges that are cut is minimum and the two sets of the partition have the
same cardinality. Given a graph G = (V, E) with |V | even, and edge weights
wij , the minimum weight equipartition problem reads

zequi = min{
1

2

∑

{i,j}∈E

wij(1 − xixj) :

n
∑

i=1

xi = 0, x ∈ {−1, 1}n} (18)

By setting X := xxT , the following natural semidefinite relaxation arises:

zequi−rel = {min
1

4
trLX : trJX = 0, diag(X) = e, X � 0}, (19)
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Problem Biq Mac
number solution time (h:min:sec) B&B nodes gap (%)
250-1 45607 2:34:31 37 0.4357
250-2 44810 1:20:23 19 0.5647
250-3 49037 1:21:13 19 0.1395
250-4 41274 1:15:23 17 0.3927
250-5 47961 1:29:24 21 0.3462
250-6 41014 14:35:02 223 1.0252
250-7 46757 2:31:12 37 0.4380
250-8 35726 88:55:05 4553 2.1931
250-9 48916 3:12:57 47 0.7808
250-10 40442 4:34:40 63 0.6178

Table 6: Test runs on the n = 250 QP instances of the OR-library [7]. The
density is d = 0.1. Column “time” gives the run times on a Pentium IV, 3.6
GHz. Column “B&B nodes” lists the number of nodes in the resulting B&B
tree and column “gap (%)” indicates the relative gap in the root node of the
B&B tree in %.

where J is the matrix of all ones.
Let A be the adjacency matrix of an unweighted graph. If solving the Max-

Cut problem of a graph with cost matrix

B = −A + J

gives a bipartition (S∗, T ∗) with |S∗| = |T ∗| = n
2 and weight k, then

n2

4
− k

is the optimal value of the equipartition problem. (The “−” in B = −A + J
arises, because we do a maximization instead of minimizing, and the J comes
from the constraint trJX = 0, that is lifted into the objective function. The
Lagrange multiplier for this constraint is guessed to be one.)

We consider the instances introduced in [29] of size n = 124 and n = 250 and
summarize in Table 7 the best results for these instances known so far (see [31]).
With our algorithm we could prove optimality of the known lower bounds of all
instances of size n = 124, and one of the instances of size n = 250. To the best
of our knowledge, these exact solutions were obtained for the first time. The
improved gap for the instances of size n = 250 and densities 0.02, 0.04 and 0.08
were obtained after a time limit of 32 hours cpu-time. We observe, however,
that the recent dissertation [3] contains similar results.
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best known
n d bound |Ecut| gap new gap

124 0.02 12.01 13 0 0
124 0.04 61.22 63 1 0
124 0.08 170.93 178 7 0
124 0.16 440.08 449 8 0
250 0.01 26.06 29 2 0
250 0.02 103.61 114 10 8
250 0.04 327.88 357 29 22
250 0.08 779.55 828 48 35

Table 7: Best known results of the equipartition problem for the Johnson graphs
and the new gap obtained by Biq Mac.

9 Summary

In this paper we have presented an algorithm, that uses a Branch-and-Bound
framework to solve the Max-Cut and related problems. At each node of the tree
we calculate the bound by using a dynamic version of the bundle method that
solves the basic semidefinite relaxation for Max-Cut strengthened by triangle
inequalities.

We conclude, that

• our approach solves any instance of all the test-bed considered up to n =
100 nodes. To the best of our knowledge, no other algorithm can manage
these instances in a routine way.

• we solve problems of special structure and sparse problems up to n = 300
nodes.

• for the first time optimality could be proved for several problems of the
OR-library. All problems that are reported at the Pseudo-Boolean web-
site [12] with dimensions up to n = 250 are now solved.

• for the first time optimality of the equipartition problem for some of the
Johnson graphs has been proved, for those where we could not close the
gap we reduced the best known gap significantly.

• for sparse problems it is not advisable to use our approach. Since linear
programming based methods are capable of exploiting sparsity, solutions
might be obtained much faster when applying these methods to sparse
data.

Using our algorithm to solve this problem has been made publicly available at

http://biqmac.uni-klu.ac.at/.
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[30] M. Jünger, G. Reinelt, and G. Rinaldi. Lifting and separation procedures
for the cut polytope. Technical report, Universität zu Köln, 2006. In
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